

Determination of 28 Perfluorinated Compounds in Aquatic Products by High Performance Liquid Chromatography-Tandem Mass Spectrometry

Fang LI¹, Sitong QUAN², Yaodong QIU²

1. Dandong Ande Biotechnology Co., Ltd., Dandong 118300, China; 2. College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China

Abstract **[Objectives]** To extract and purify perfluoroalkyl and polyfluoroalkyl substances (PFAS) from aquatic products and determine the optimal pretreatment conditions. **[Methods]** The QuEChERS method was employed for the extraction and purification of PFAS in aquatic products. The detection of PFAS was carried out using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in ESI negative ion mode with multiple reaction monitoring (MRM), and quantification was performed using the external standard method. By optimizing instrument parameters such as ion source temperature, spray voltage, and collision energy, high selectivity and sensitivity of the detection were ensured. **[Results]** The established calibration curves for 28 PFAS compounds, covering a range of 0.02 to 20 ng/mL, demonstrated excellent linearity. Spike recovery tests yielded limits of detection (LOD) between 0.02 and 0.5 μg/kg for the 28 PFAS compounds, with recovery rates ranging from 72.2% to 113.0%. **[Conclusions]** The method established in this study demonstrates excellent linearity, and is accurate, reliable, efficient, simple, and rapid. It possesses considerable practical applicability and can be used for the quality and risk assessment of 28 PFAS compounds in aquatic products, indicating high practical utility.

Key words High Performance Liquid Chromatography-Tandem Mass Spectrometry (HPLC-MS/MS), Perfluoroalkyl and polyfluoroalkyl substances (PFAS), Aquatic products, QuEChERS, Limit of detection (LOD)

0 Introduction

The perfluoroalkyl and polyfluoroalkyl substances (PFAS) have been produced and used for over 70 years^[1]. Throughout various stages including production, application, and subsequent waste treatment and disposal, PFAS are inevitably released into the environment, where they undergo varying degrees of transport and transformation^[2–4]. In 2023, the European Union published a proposal to ban the production and use of PFAS, covering more than 10 000 PFAS compounds. Although long-chain PFAS such as perfluorooctanesulfonic acid or perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have been restricted in production and use, numerous short-chain and other novel PFAS alternatives continue to be developed and applied, leading to a continuous increase in the types of PFAS detectable in environmental media^[5]. As the world's largest producer and consumer of fluorinated compounds, China accounts for approximately 64.9% of the global production capacity of fluoropolymers^[6–8].

At present, the primary detection methods for perfluoroalkyl substances include gas chromatography (GC)^[9], gas chromatography-tandem mass spectrometry (GC-MS/MS)^[10–12], and liquid chromatography-tandem mass spectrometry (LC-MS/MS)^[13–15]. Gas chromatography (GC) overcomes the low volatility of PFAS through pre-column derivatization and is commonly used for analyzing short-chain PFAS (C4–C8). This method is cost-effective and

suitable for detecting volatile precursors (such as FTOHs)^[9]. However, it involves cumbersome derivatization steps (derivatization efficiency <80%) and cannot detect long-chain or polar PFAS. Gas chromatography-tandem mass spectrometry (GC-MS/MS) can detect nine volatile precursors in food contact materials, with detection limits of 0.05–0.5 μg/kg, outperforming traditional GC combined with liquid-liquid extraction techniques. Nevertheless, the high-temperature injection port leads to thermal decomposition of long-chain PFAS (e.g., PFOS decomposition rate >30%). Liquid chromatography-tandem mass spectrometry (LC-MS/MS), as the current mainstream technique, dominates due to its high sensitivity and broad applicability. Using a C₁₈ column, baseline separation of 28 PFAS compounds can be achieved (resolution >1.5), and dynamic multiple reaction monitoring (dMRM) improves the signal-to-noise ratio by 2–3 times.

Due to their unique chemical properties, PFAS have been produced on a large scale worldwide and are extensively used across numerous industrial and daily life applications, such as water- and oil-resistant fabrics, food packaging, and firefighting foams. However, with the continuously increasing usage of PFAS, they have caused severe pollution to the global environment^[16–19], and China has also been significantly affected. Natural water bodies in many regions of China have been contaminated by PFAS, which subsequently enter the food chain, leading to a certain degree of contamination in aquatic products^[20–22]. Given that PFAS are persistent, bioaccumulative, and potentially toxic, posing potential risks to human health and the ecological environment, the accurate detection of PFAS levels in aquatic products is particularly crucial.

Received: October 2, 2025 Accepted: November 10, 2025

Fang LI, master's degree, associate senior engineer, research fields: physical and chemical analysis, detection of pesticides and veterinary drugs, additives, hazardous substances, and toxins in food, water, and soil, as well as the application of detection instruments.

1 Materials and methods

1.1 Materials and reagents Acetonitrile (chromatographic grade, Merck, USA); Ammonium acetate (chromatographic grade, Merck, USA); Sodium chloride (analytical grade, Tianjin Yongda Chemical Reagent Co., Ltd.); Anhydrous magnesium sulfate (analytical grade, Tianjin Yongda Chemical Reagent Co., Ltd.); PAS powder (40–60 μm, Tianjin Bonna–Agela Technologies Co., Ltd.); Polyethersulfone (PES, 0.22 μm): Jinteng. Glass or polytetrafluoroethylene (PTFE) utensils should be avoided during the experiment process.

1.2 Instruments and equipment Triple quadrupole mass spectrometer (4500): AB SCIEX, USA; High-performance liquid chromatograph (ExionLC): Shimadzu, Japan; Ultrapure water system (DI Pro): Sartorius, Germany; Vortex mixer (VORTEX): Qilinbeier Instrument Manufacturing Co., Ltd., Haimen City; One-over-ten-thousand electronic balance (BCE224-1CCN): Sartorius, Germany; High-speed refrigerated centrifuge (H1750R): Xiangyi Centrifuge Instrument Co., Ltd., Changsha; Nitrogen blow-down instrument (HSC-24B): Tianjin Heng'ao Technology Co., Ltd.

1.3 Working conditions of instruments

1.3.1 Chromatographic conditions. Phenomenex LC Column C₁₈ column (50 mm × 3 mm, 5 μm); Phenomenex LC Column C₁₈

column (100 mm × 2 mm, 5 μm); injection volume: 10 μL; column temperature: 30 °C; flow rate: 0.4 mL/min; The mobile phase A was acetonitrile and B was 2 mmol/L ammonium acetate. The gradient elution procedure is detailed in Table 1.

Table 1 Parameters for procedure gradient elution

Time // min	Mobile phase A // %	Mobile phase B // %
0	20	80
1	20	80
5.5	50	50
12.5	95	5
14	99	1
17	99	1
17.1	20	80
22	20	80

1.3.2 Mass spectrum conditions. Electrospray ionization (ESI) source, negative ion mode; Scanning mode: Multiple reaction monitoring (MRM). Curtain gas (CUR), 35 psi; Ion source gas 1 (GS1), 55 psi; Ion source gas 2 (GS2), 55 psi; Ion Spray voltage (IS), 4 500 V; Ion source temperature (TEM), 550 °C. The characteristic ions are listed in Table 2, with the “*” indicating the quantitative ion.

Table 2 Mass spectrometry parameters

No.	Compound name	Abbrev.	Parent ion/mass-to-charge ratio	Product ion/mass-to-charge ratio	Taper hole voltage // V	Collision energy // eV
1	1H,1H, 2H, 2H- Perfluorohexanesulfonic acid	4:2FTS	326.9	306.8*, 81.1	-50	-29.0, -52.0
2	Perfluorohexanoic acid	PFHxA	312.9	268.9*, 119.0	-35	-11.0, -26.0
3	7H – Perfluoroheptanoic acid	7HPFHpA	344.9	280.7*, 131.0	-30	-15.0, -39.0
4	Nonafluorobutane-1-sulfonic acid	PFBS	298.7	79.8*, 98.8	-70	-60.0, -56.0
5	Perfluoro(2-methyl-3-oxahexanoic) acid	PFPrOPrA	329.0	308.9*, 83.0	-60	-28.0, -51.0
6	Perfluoroheptanoic acid	PFHpA	362.9	318.9*, 168.9	-30	-13.0, -21.0
7	1H, 1H, 2H, 2H- Perfluoroctanesulfonic acid	6:2FTS	426.8	407.0*, 80.9	-20	-34.0, -74.0
8	Pentadecafluoroctanoic acid	PFOA	412.9	368.9*, 168.9	-30	-15.0, -25.0
9	2-perfluoroctylethanoic acid	2-PFOA	476.9	392.7*, 413.1	-30	-20.0, -12.0
10	Perfluorohexane-1-sulphonic acid	PFHxS	398.9	80.0*, 98.9	-80	-79.0, -66.0
11	Perfluoronanoic acid	PFNA	462.9	418.9*, 218.9	-27	-14.0, -23.0
12	Glycine, N-[(heptadecafluoroctyl) sulfonyl] -	N-PFOS	555.9	497.8*, 418.8	-80	-43.0, -36.0
13	1H, 1H, 2H, 2H- heneicosfluorodecanesulphonic acid	8:2FTS	526.9	506.8*, 80.9	-50	-37.0, -84.0
14	Perfluoroheptanesulfonic acid	PFHpS	448.6	79.9*, 98.9	-100	-92.0, -70.0
15	Heptadecafluoro-N-methyloctanesulphonamide	N-MeFOSAA	569.8	419.0*, 483.1	-60	-28.0, -23.0
16	Perfluorodecanoic acid	PFDA	512.9	468.9*, 218.9	-33	-16.0, -24.0
17	N-Ethylperfluoroctane sulfonamidoacetic acid-d5	N-EtFOSAA	583.8	418.9*, 525.8	-60	-30.0, -28.0
18	Perfluoroctanesulfonic acid	PFOS	498.6	80.0*, 99.0	-60	-96.0, -81.0
19	Perfluoroundecanoic acid	PFUdA	562.9	518.9*, 268.9	-29	-15.0, -26.0
20	1H, 1H, 2H, 2H- Perfluorododecane sulphonic acid	10:2FTS	626.8	606.8*, 80.9	-80	-44.0, -108.0
21	Perfluorododecanoic acid	PFDoA	612.8	568.8*, 168.9	-30	-16.0, -31.0
22	Perfluoroctane sulfonamide	FOSA	497.9	77.8*, 478.0	-60.0	-75.0, -38.0
23	Perfluorotridecanoic acid	PFTrDA	662.8	618.8*, 168.9	-60.0	-17.0, -34.0
24	Perfluorotetradecanoic acid	PFTeDA	712.8	668.8*, 168.9	-30.0	-17.0, -37.0
25	Perfluorooctadecanoic acid	PFSA	912.8	869.1*, 218.8	-20.0	-27.0, -40.0
26	2H, 2H, 3H, 3H- Perfluoroundecanoic acid	PFUnA	490.9	367.1*, 387.1	-40.0	-34.0, -20.0
27	Bis[1H, 1H, 2H, 2H-perfluorodecane] phosphate	DFDP	989.1	96.8*, 542.8	-15.0	-105.0, -37.0
28	Perfluorohexane sulfonamide	FHxSA	398.0	77.9*, 169.1	-60	-36.0, -36.0

1.4 Sample processing We weighed 5.00 g of the sample (accurate to 0.01 g) and transferred it into a 50 mL plastic centrifuge tube. Precisely added 5 mL of acetonitrile, then extracted by ultrasonication for 30 min. After extraction, added 1.0 g of sodium chloride, 2.0 g of anhydrous magnesium sulfate, and 0.1 g of PSA powder. Mixed thoroughly, then centrifuged at 5 500 r/min for 10 min. Used a plastic pipette to transfer the supernatant acetonitrile layer into a plastic centrifuge tube. Evaporated to dryness under a nitrogen stream at 50 °C. Added 1 mL of acetonitrile to dissolve the residue, vortex to mix well, and filtered through a 0.22 µm polyethersulfone (PES) membrane. The resulting solution is now ready for instrumental analysis.

2 Results and analysis

2.1 Selection of pretreatment method In this study, two sample pretreatment methods were compared: direct extraction with acetonitrile, and reconstitution of the sample with 10 mL of water followed by acetonitrile extraction. Since aquatic products inherently have high water content, additional water for reconstitution is unnecessary. After reconstitution, the emulsion layer between the acetonitrile and aqueous phases appeared blurred, with poor phase separation. In addition, the volume of the acetonitrile extract was reduced and insufficiently separated from the aqueous phase, ultimately resulting in lower recovery rates.

2.2 Effects of the purification step The purification process involving the addition of sodium chloride, anhydrous magnesium sulfate, and PSA powder effectively removed impurities from the sample. Sodium chloride facilitated the phase separation between acetonitrile and the aqueous layer, while anhydrous magnesium sulfate served as a drying agent to eliminate residual moisture. PSA powder adsorbed interfering substances such as fatty acids and pigments from the sample. Comparative analysis of pre- and post-purification results demonstrated higher recovery rates in purified samples. Furthermore, the extract obtained after nitrogen blow-down exhibited cleaner composition and more stable baseline, significantly enhancing the accuracy and sensitivity of the detection method.

2.3 Optimization of chromatographic conditions In this experiment, two chromatographic columns were employed for method development. When using only the Phenomenex LC Column C₁₈ (100 mm × 2 mm, 5 µm), chromatographic peak splitting (double peaks) occurred after a period of usage, with one of the peaks appearing as a broad peak, which interfered with both qualitative

and quantitative analysis. By connecting two columns in series, using the Phenomenex LC Column C₁₈ (50 mm × 3 mm, 5 µm) for pre-concentration followed by the Phenomenex LC Column C₁₈ (100 mm × 2 mm, 5 µm) for separation, the phenomenon of double peaks was effectively resolved.

Due to the presence of carboxylic acid and sulfonic acid groups in PFAS compounds, which are analyzed in negative ion mode, ammonium acetate is generally employed as a mobile phase component to improve peak shape and enhance ionization efficiency. Commonly used mobile phase systems include methanol-ammonium acetate, acetonitrile-ammonium acetate, and isopropanol-methanol-ammonium acetate. Compared to the methanol-ammonium acetate and isopropanol-methanol-ammonium acetate systems, the acetonitrile-ammonium acetate mobile phase system yields superior chromatographic peak shape, reduced tailing, and enhanced response, thereby providing better separation performance. Consequently, the acetonitrile-ammonium acetate mobile phase system was selected for this analysis.

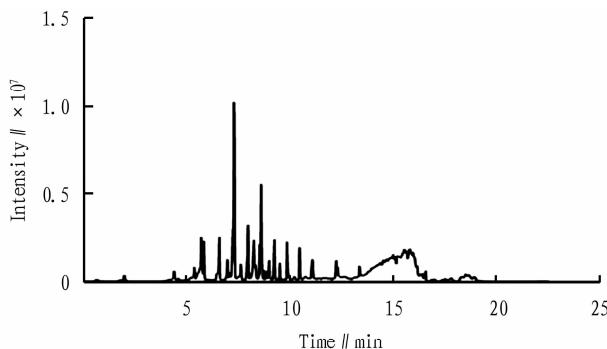


Fig. 1 Total ion chromatogram (TIC) of 28 PFAS compounds

2.4 Spiked recovery The QuEChERS method was selected as the sample pretreatment approach in this study due to its rapidity, simplicity, and high efficiency. Spiked recovery tests were performed on live clams (*Ruditapes variegata*) by fortifying them with 28 PFAS compounds at different concentrations. The results showed average recoveries of 72.2% – 113.0% with six replicates, and the precision (RSD) was below 9.56%. The linear ranges and correlation coefficients obtained for each compound are presented in Table 3. As shown in the table, the limits of detection (LOD) for the 28 PFAS compounds ranged from 0.02 to 0.5 µg/kg, and good linearity ($R^2 \geq 0.99$) was achieved within the concentration range of 0.02 – 20 ng/mL.

Table 3 Linear range, correlation coefficient, recovery, LOD, and precision for 28 PFAS compounds in live clams (*Ruditapes variegata*)

Compound name	Addition concentration // µg/kg	Average recovery // %	LOD // µg/kg	Linear equation	Correlation coefficient R^2	Precision // %
4:2FTS	0.05	102.6	0.05	$y = 1.70068e5x + 3950.73580$	0.99773	5.74
PFHxA	0.05	101.1	0.05	$y = 6.44687e5x + 20220.5576$	0.99715	6.25
7HPFHpA	0.05	81.7	0.05	$y = 9.38503e5x + 21403.9043$	0.99655	3.48
PFBS	0.05	88.5	0.05	$y = 3.00160e5x + 3316.14196$	0.99727	7.89
PFPrOPrA	0.50	116.2	0.50	$y = 12152.80402x + 681.8729$	0.99759	8.25
PFHpA	0.10	87.2	0.10	$y = 1.05357e6x + 28288.4079$	0.99755	7.61

(To be continued)

(Continued)

Compound name	Addition concentration // $\mu\text{g/kg}$	Average recovery // %	LOD // $\mu\text{g/kg}$	Linear equation	Correlation coefficient R^2	Precision // %
6:2FTS	0.05	88.7	0.05	$y = 3.28022e5x + 5396.79611$	0.99835	2.69
PFOA	0.01	109.4	0.01	$y = 1.91387e6x + 4.08496e4$	0.99447	5.26
2-PFOA	0.10	91.3	0.10	$y = 1.06630e5x + 1611.08630$	0.99455	6.16
PFHxS	0.05	97.1	0.05	$y = 4.05601e5x + 6749.61160$	0.99899	9.56
PFNA	0.02	98.6	0.02	$y = 1.36080e6x + 18020.0737$	0.99392	8.31
N-PFOS	0.05	89.5	0.05	$y = 9.78948e4x + 2205.41550$	0.99364	3.33
8:2FTS	0.05	99.6	0.05	$y = 2.42239e5x + 6033.69891$	0.98297	4.51
PFHpS	0.10	100.5	0.10	$y = 3.30674e5x + 5855.13936$	0.99904	2.56
N-MeFOSAA	0.02	113.0	0.02	$y = 2.45908e5x + 2595.72060$	0.99928	5.69
PFDA	0.05	90.6	0.05	$y = 1.67510e6x + 29695.3638$	0.99654	6.49
N-EtFOSAA	0.05	94.3	0.05	$y = 2.39335e5x + 1855.70159$	0.99738	7.51
PFOS	0.10	86.7	0.10	$y = 3.14384e5x + 7515.22634$	0.99919	5.12
PFUdA	0.05	108.2	0.05	$y = 1.48699e6x + 21666.3580$	0.99392	4.96
10:2FTS	0.05	86.5	0.05	$y = 3.03723e5x + 4458.23958$	0.99832	5.69
PFDoA	0.05	72.2	0.05	$y = 1.37656e6x + 22608.3914$	0.99568	7.69
FOSA	0.05	82.6	0.05	$y = 6.17593e5x + 6217.39617$	0.99604	8.64
PFTrDA	0.05	98.5	0.05	$y = 1.48015e6x + 27923.5424$	0.99474	9.11
PFTeDA	0.05	100.0	0.05	$y = 1.51002e6x + 3.41824e4$	0.99363	6.61
PFSA	0.02	89.7	0.02	$y = 1.25196e5x + 893.36494$	0.99938	7.26
PFUnA	0.05	78.6	0.05	$y = 3.28383e5x + 2562.25381$	0.99978	8.26
DFDP	0.05	94.6	0.05	$y = 1.30614e5x + 1851.01078$	0.99901	5.64
FHxSA	0.02	92.4	0.02	$y = 2.31444e5x + 12997.7680$	0.99957	6.40

Based on the obtained detection data, nearest neighbor analysis was performed using SPSS Statistics 17.0 software, with the LOD concentration as the target variable and recovery rate, precision, and correlation coefficient as feature variables. The results showed 22 valid samples, achieving an effective rate of 71.0%. This indicates that the detection results for the 28 PFAS compounds were relatively stable, with no significant outliers observed. The specific analytical plot is shown in Fig. 2.

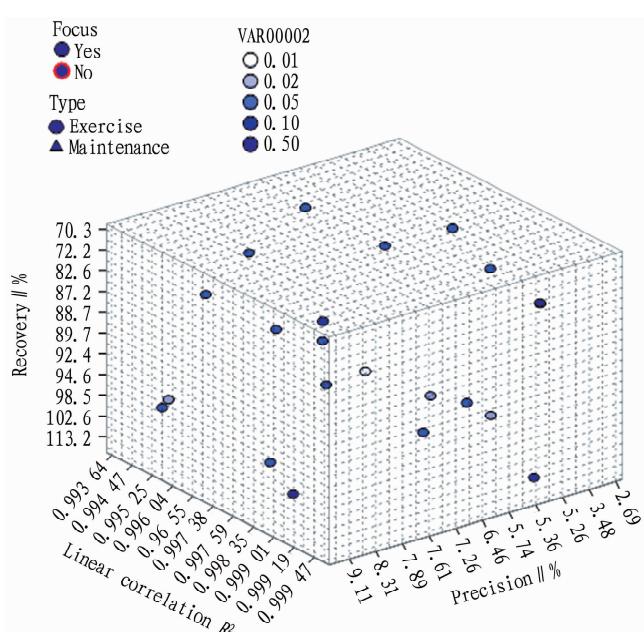


Fig. 2 Detection results of 28 PFAS compounds

2.5 Sample analysis Analysis of nearly 100 samples revealed a PFAS detection rate exceeding 80%. The detected perfluorinated compounds were primarily identified as Perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), Perfluorohexane-1-sulphonic acid (PFHxS), Perfluorononanoic acid (PFNA), Perfluorodecanoic acid (PFDA), Perfluorooctanesulfonic acid (PFOS), Perfluoroundecanoic acid (PFUdA), Perfluorotridecanoic acid (PFTrDA), and Perfluorotetradecanoic acid (PFTeDA). According to a relevant study conducted in the major economic sea areas of Liaoning Province, PFOA was detected in 100% of various fish samples, while PFOS reached a 100% detection rate in fish viscera^[23]. These findings demonstrate that aquatic products in coastal regions are universally contaminated with PFAS, warranting significant attention.

3 Conclusions

In this study, 28 PFAS compounds in aquatic product samples were extracted with acetonitrile and purified of pigment impurities using the QuEChERS method^[24]. The analysis was performed using HPLC-MS/MS in multiple reaction monitoring (MRM) mode. The established method is accurate, reliable, efficient, simple, and rapid, demonstrating high practical value for the quality and risk assessment of PFAS in aquatic products.

References

- [1] GLÜGE J, SCHERINGER M, COUSINS IT, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS) [J]. Environmental Science Processes & Impacts, 2020, 22(12): 2345–2373.
- [2] EVICH MG, DAVIS MJB, MCCORD JP, et al. Per- and polyfluoroalkyl

- substances in the environment [J]. *Science*, 2022, 375 (6580) : eabg9065.
- [3] LIU Y, ROSE JE, WILSON K, et al. Biomonitoring result of PFAS exposure from Gabreski Air National Firefighting foam among residents in Westhampton, NY [J]. *Hygiene and Environmental Health Advances*, 2025; 14100127 – 100127.
- [4] Ma Y, Sharkey M, Coggins M A, et al. Concentrations of perfluoroalkyl substances in sediments and wastewater treatment plant-derived biosolids from Ireland [J]. *Science of the Total Environment*, 2025, 979, 179380.
- [5] SUN MY, HU J, LIX, et al. Environmental pollution, health risks, and regulatory status of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in China [J]. *Asian Journal of Ecotoxicology*, 2024, 19 (6) : 35 – 47. (in Chinese).
- [6] DENG Y. Introducing EU's PFAS regulations and advice for Chinese companies [EB/OL]. (2023-06-22) [2024-06-10].
- [7] KOVACS J, HIGGINS R, IONESCO N, et al. Environmental impact of PFAS incineration [J]. *Waste Management Bulletin*, 2025, 3 (3) : 100202.
- [8] LI S, WANG Q, LYU L, et al. Pretreatment and detection of per- and polyfluoroalkyl substances (PFAS): A review of current advancements, development challenges, and perspectives [J]. *Microchemical Journal*, 2025, 213, 113789.
- [9] WEI LL. Rapid determination of perfluorooctanoic acid in food contact materials by pre-column derivatization and gas chromatography [J]. *Packaging and Food Machinery*, 2019, 37 (4) : 69 – 72, 57. (in Chinese).
- [10] ZHANG ZX, XIAO HN, ZHONG HN, et al. Analysis on migration of 9 volatile perfluorinated compounds precursors in food-contact paper based materials by gas chromatography-tandem mass spectrometry with liquid-liquid extraction [J]. *Journal of Instrumental Analysis*, 2018, 37 (9) : 1002 – 1007. (in Chinese).
- [11] NEWTON RS, BOWDEN AJ, CHAREST N, et al. Filling the gaps in PFAS detection: Integrating GC-MS non-targeted analysis for comprehensive environmental monitoring and exposure assessment [J]. *Environmental Science & Technology Letters*, 2025, 12 (2) : 1 – 9.
- [12] WOLF N, MÜLLER L, ENGE S, et al. Thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis of PFAS used in food contact materials [J]. *Food Additives & Contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment*, 2024; 11 – 19.
- [13] WANG Z, QIAO HQ, YANG J, et al. Simultaneous determination of 22 kinds of perfluorinated alkyl substances in aquatic products by ultra performance liquid chromatography-tandem mass spectrometry [J]. *Journal of Food Safety and Quality*, 2022, 13 (4) : 1132 – 1140. (in Chinese).
- [14] BUCKENMAIER S, RIEMENSCHNEIDER C, SCHÄCHTELE A, et al. Chromatographic Techniques for Improving the LC/MS Quantification of PFAS [J]. *Journal of Separation Science*, 2025, 48 (5) : e70155.
- [15] YORK J, STEIMLING J, PSCHIERER J. The Analysis of PFAS in Milk by LC-MS/MS [J]. *Lebensmittelchemie*, 2024, 78 (S3) : S3 – 135.
- [16] CHAUDHARY A, BASHIR W, MAJID A, et al. PFAS insights: A review of historical data, environmental applications, health effects, and pollution challenges in Pakistan [J]. *Environmental Science and Policy*, 2025, 167, 104056.
- [17] CHEN C, WANG Y, CHEN F, et al. Comprehensive assessment of per- and polyfluoroalkyl substances (PFAS) pollution in a coastal region: Contributions from nearshore and offshore sources [J]. *Water*, 2025, 17 (2) : 149.
- [18] ONENCAN MA, BISSCHOP L, HENDLIN Y. Experiences of living within PFAS-polluted environs: A systematic review [J]. *Crime, Law and Social Change*, 2024, 82 (4) : 1 – 27.
- [19] REKIK H, ARAB H, PICHON L, et al. Per- and polyfluoroalkyl (PFAS) Eternal pollutants: sources, environmental impacts and treatment processes [J]. *Chemosphere*, 2024, 358, 142044.
- [20] LI X, ZHAO Z, ZI J, et al. Per- and Polyfluoroalkyl Substances (PFAS) in Snow, River, and Drinking Waters from a Typical Rural Area of Shandong, China [J]. *Exposure and Health*, 2025, (prepubish) : 1 – 15.
- [21] WU YL, HE TW, ZEESHAN M, et al. Incidence of respiratory diseases associated with per- and polyfluoroalkyl substances (PFAS) in PM2.5: New evidence from a population-based survey of Pearl River Delta (PRD), China [J]. *Journal of Hazardous Materials*, 2025; 494, 138485.
- [22] YANG M, LIU X, XU LS, et al. Concentrations, sources and health risks of per- and polyfluoroalkyl substances in ambient PM1 in the Pearl River Delta region, China [J]. *Environment International*, 2025; 198, 109439.
- [23] XU WY, SHEN BZ, QU SC et al. Pollution status and risk analysis of perfluorinated compounds in the commercial fishes in Liaoning coastal areas [J]. *Journal of Food Safety and Quality*, 2025, 16 (7) : 33 – 37. (in Chinese).
- [24] LI F, LI XG, LI XM, et al. Research on the rapid screening of pesticide residues in straw berries based on high performance liquid chromatography-time-of-flight mass spectrometry SWATH acquisition mode [J]. *Quality and Safety of Agro-products*, 2022 (4) : 38 – 41. (in Chinese).

(From page 12)

- [4] XIAO Y, TAN JW, MENG LK, et al. Employment survey and research of engineering management graduates based on competency and demand orientation [J]. *Higher Architectural Education*, 2025. (in Chinese).
- [5] LIU Y, GUO SY. Research on the current situation, practical challenges, and countermeasures of college students' employment [J]. *China Economic & Trade Herald*, 2025 (16) : 74 – 77. (in Chinese).
- [6] MA HX. Exploration on improving college students' employability and entrepreneurial ability guided by human resource demand [J]. *Investment and Entrepreneurship*, 2025, 36 (15) : 10 – 12. (in Chinese).
- [7] HOOLEY T. Career development and human capital theory: preaching the "education gospel" [J]. *The Oxford Handbook of Career Develop-*

ment

- ment
- [8] WANG WT, YUAN L. The labor absorption dilemma and solution paths in cross-provincial adjacent regional industrial cooperation parks: A case study of the Chuanyu Gaozhu New Area [J]. *Economic Forum*, 2025 (8) : 83 – 90. (in Chinese).
- [9] MASLOW AH. *Maslow's Hierarchy of Needs* [M]. Beijing: China Youth Press, 2022. (in Chinese).
- [10] WANG QG, KONG FB. The logic of identity construction for policy target groups: Taking the household registration policy and its reform as an example [J]. *Public Administration and Policy Review*, 2022, 11 (2) : 35 – 49. (in Chinese).