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Motor Imagery ( MI) -Electroencephalogram ( EEG) Deco-
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Abstract Deep learning methods have been widely applied in motor imagery ( MI)-based brain-computer interfaces ( BCI) for decoding electroencephalogram
(EEG) signals. High temporal resolution and asymmetric spatial activation are fundamental properties of EEG during MI processes. However, due to the limited re-
ceptive field of convolutional kernels, traditional convolutional neural networks ( CNNs) often focus only on local features, and are insufficient to cover neural
processes across different frequency bands and duration scales. This limitation hinders the effective characterization of rhythmic activity changes in MI-EEG signals
over time. Additionally, MI-EEG signals exhibit significant asymmetric activation between the left and right hemispheres. Traditional spatial feature extraction
methods overlook the interaction between global and local regions at the spatial scale of EEG signals, resulting in inadequate spatial representation and ultimately
limiting decoding accuracy. To address these limitations, in this study, a novel deep learning network that integrates multi-modal temporal features with spatially
asymmetric feature modeling was proposed. The network first extracts multi-modal temporal information from EEG data channels, and then captures global and hem-
ispheric spatial features in the spatial dimension and fuses them through an advanced fusion layer. Global dependencies are captured using a self-attention module,
and a multi-scale convolutional fusion module is introduced to explore the relationships between the two types of temporal features. The fused features are classified
through a classification layer to accomplish motor imagery task classification. To mitigate the issue of limited sample size, a data augmentation strategy based on sig-
nal segmentation and recombination is designed. Experimental results on the BCI Competition IV-2a (bbic-IV-2a) and BCI Competition IV-2b (bbic-1V-2a) data-
sets demonstrated that the proposed method achieved superior accuracy in multi-class motor imagery classification compared with existing models. On the BCI-IV-2a
dataset, it attained an average classification accuracy of 84.36% , while also showing strong performance on the binary classification BCI-IV-2b dataset. These out-

comes validate the capability of the proposed network to enhance MI-EEG classification accuracy.
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Brain-computer interface ( BCI), an emerging technology
that establishes direct communication between the human brain
and external devices through electroencephalographic signals, has
demonstrated broad application prospects in recent years in fields
such as rehabilitation, prosthetic control, and human-computer in-
teraction'' . The motor imagery (MI) paradigm based on non-in-
vasive electroencephalography ( EEG) has become a crucial con-
trol strategy in BCI systems, as it can elicit distinguishable neural
activity in the motor cortex without requiring external stimuli.
Furthermore, it has emerged as a promising technology in non-
medical fields, such as virtual reality, gaming"’, and robotic arm
control™ ™! Despite the significant potential of MI-EEG in clini-
cal and engineering applications, its decoding process still faces
several challenges: the inherently low signal-to-noise ratio of EEG
signals, strong inter-individual differences, and non-stationarity
influenced by factors such as channel layout and electrode contact.
These issues make reliable, robust and real-time MI-EEG deco-
ding an unresolved problem.

Traditional MI-EEG decoding methods predominantly rely on
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manually designed feature extraction and classical classifiers. For
instance, Common Spatial Pattern ( CSP) 6] , one of the most
widely used features in brain-computer interface ( BCI) systems,
aims to identify an optimal spatial filter that maximizes the differ-
ence between two classes of EEG signals. Building upon CSP, nu-
merous variants of the CSP method have been proposed to enhance

-11]

decoding performance'’ Within the Riemannian geometry-

based classification framework, the covariance structure of EEG

2-14] " Various methods based

data is directly utilized as features
on wavelets have been applied to extract time-frequency features
from EEG'” ™", Following feature extraction, classifiers such as
Support Vector Machine (SVM) or Linear Discriminant Analysis
(LDA) are commonly applied to obtain decoding results. Al-
though these methods have achieved satisfactory performance un-
der specific experimental settings, they heavily rely on prior fea-
ture engineering and typically separate feature extraction and clas-
sification into two distinct stages, making end-to-end joint optimi-
zation challenging. To address this, researchers have recently
widely adopted deep learning approaches, particularly Convolu-
tional Neural Networks (CNNs), which possess the capability to
learn directly from EEG, enabling automatic extraction of discrim-
inative spatiotemporal features from raw EEG'7 ™", Architectures
such as DeepConvNet and ShallowConvNet employ a two-stage

spatial and temporal convolutional input layer structure to integrate
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feature extraction and classification for processing of EEG data'™’ .

Lawhern et al. "*'" proposed EEGNet, which uses the channel size
as a deepwise convolution kernel to extract spatial information,
achieving notable progress in MI-EEG decoding and demonstrating
the advantages of data-driven representation learning ™.
However, the limitations of traditional CNNs are increasingly
evident. The receptive fields of convolutional kernels are typically
confined to local spatiotemporal regions, making it difficult to ade-
quately capture long-range temporal dependencies in EEG signals.
Since EEG serves as a kind of highly dynamic time-series signal ,
time convolution on a single scale is often insufficient to cover
neural processes in different frequency bands and duration scales.
To address these shortcomings, attention mechanism-based mod-
els, known for their ability to capture long-term dependencies and

" and natural language pro-

widely applied in image processing”
cessing™ | have been increasingly introduced into the EEG field
to enhance decoding performance. The Attention-based Temporal
Convolutional Network ( ATCNet) integrates multi-head self-atten-
tion with temporal convolutional networks'™' to highlight the most
critical features. The EEG Convolutional Decoder ( Conformer )
employs convolutional modules for feature extraction and subse-
quently passes the features to self-attention modules to capture
global dependencies ™. While these studies have improved deco-
ding performance, they have not yet fully combined attention
mechanisms and temporal features. On the other hand, numerous
neuroscience studies have demonstrated that the left and right cer-
ebral hemispheres exhibit varying degrees of activation differences

during motor imagery and other tasks'”’.

However, existing MI-
EEG decoding methods overlook the complementary role between
local hemispheric representations and global spatial representa-
tions. Therefore, this paper argues that spatial feature extraction
should simultaneously account for the complementarity between lo-
cal hemispheric representations and global representations.

Based on the aforementioned challenges, we argue that an ef-
fective MI-EEG decoder must meet two key requirements. First, it
must adequately capture multimodal temporal information and cap-
ture global dependencies across time segments with the help of
self-attention mechanism. Second, it should incorporate targeted
spatial designs to explicitly learn asymmetric patterns between the
left and right hemispheres and overall spatial activation, thereby
obtaining more physiologically meaningful and discriminative spa-
tial representations. To this end, in this study, a novel end-to-end
deep learning network was proposed to capture multimodal tempo-
ral features and asymmetric spatial features in MI-EEG decoding
tasks. Design idea of the network architecture ; In the temporal di-
mension, it retains dual-modal temporal extraction based on medi-
an pooling and standard deviation pooling, while employing a
shared self-attention module to learn global dependencies of the
two types of temporal features. In the spatial dimension, it intro-
duces a neurophysiologically inspired asymmetric spatial module

(comprising parallel designs of hemispheric convolutional kernels

and global convolutional kernels) to explicitly extract hemispheric
and global spatial representations. Subsequently, a multi-scale
convolutional fusion module integrates temporal and spatial fea-
tures to obtain more discriminative representations. In addition, to
enhance the model’s generalization capability, a data augmentation
strategy based on signal segmentation and recombination is adopt-
ed, aiming to mitigate overfitting issues caused by limited sample

size and signal non-stationarity.

Network Overview
This section provides a detailed introduction to the proposed
network and data augmentation method. The architecture of the

proposed network is illustrated in Fig. 1.
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Fig. 1 Opverall architecture of the proposed network

Proposed network architecture

The network consists of four components in an end-to-end
process: a feature extraction module, a self-attention module, a
multi-scale convolutional fusion module, and a classification
module.

Feature extraction module The feature extraction module is
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designed to extract discriminative features from raw EEG signals.
First, the raw EEG data is expanded along the channel dimension
in one dimension. Subsequently, a multi-scale temporal convolu-
tional filter bank is employed to perform local modeling of the sig-
nal in time series, capturing dynamic features across different time
ranges. Compared with a single convolutional kernel, the multi-
scale temporal convolutional filter bank enables more comprehen-
sive extraction of temporal features and enhances the model’s sen-
sitivity to different frequency bands and rhythmic components:m .
In the architecture propsed in this study, a filter bank composed of
three two-dimensional convolutional layers with different kernel si-
zes is selected, with kernel sizes set to (1,15), (1,31), and
(1,63), respectively, while the output size remains unchanged
along the temporal dimension. The three outputs of the temporal
filter bank are concatenated along the convolutional channel di-
mension. They are further normalized through a batch normaliza-
tion layer to adjust the weight values'™ . Following batch normali-
zation, spatial dimension features in the EEG signals are further
considered. Existing studies have demonstrated that motor imagery
tasks elicit activation patterns in specific regions of the cerebral
cortex, and these activations often exhibit significant inter-hemi-
spheric differences. Based on this neuroscientific evidence, the
design concept of spatial asymmetry is introduced during spatial
modeling in the architecture propsed in this study. In specific,
unlike traditional methods that directly apply global convolution
across all channels, the electrode channels are divided into left
and right hemispheres and perform convolutional operations sepa-
rately, aiming to capture inter-hemispheric differences and im-
prove classification performance. Spatial convolution is applied to
the electrode channels of the left and right hemispheres respective-
ly, with the kernel size set to half of the global convolution kernel ,
ensuring coverage of the channel range of each hemisphere. After
feature extraction from the left and right hemispheres, a spatial
convolutional layer with a kernel size of (C, 1) is used to learn
representations of interactions between different electrode chan-
nels. This approach not only captures local asymmetry, but also
integrates overall inter-hemispheric connections, thereby forming
more discriminative spatial feature representations. Here, C de-
notes the number of electrode channels in the EEG data. To fuse
spatial information from global and hemispheric sources, an ad-
vanced fusion layer is employed to integrate the three types of spa-
tial information. In specific implementation, a one-dimensional
convolution (with a kernel size of 3 x 1) is applied to the output of
the asymmetric spatial layer to fuse information along the spatial
dimension. Subsequently, a batch normalization layer is employed
to enhance the training process and mitigate overfitting. Further-
more, the Exponential Linear Unit ( ELU) (301
activation function.

is adopted as the

To aggregate temporal information and reduce computational
complexity, traditional methods often employ average pooling to
reduce computational complexity and compress feature dimen-

. [20-21,26,31]
sions

. However, average pooling only reflects the cen-
tral tendency of the signal and is insufficient for fully characteri-
zing the complex dynamic features of non-stationary EEG signals,

making it inadequate for discriminative feature extraction in

MI-EEG decoding ™ /. Standard deviation pooling, on the other
hand, characterizes the intensity of signal fluctuations and can
capture the variation amplitude of rhythmic activities in different
motor imagery tasks, which is of significant importance for enhan-

%3] " Therefore, both median

cing classification dis(:riminability[
pooling and standard deviation pooling are performed along the
temporal dimension with a kernel size of (1,50) and a stride of
(1,15). The features obtained from median pooling and standard
deviation pooling can be treated as representations of different time
segments. Finally, the electrode channel dimensions are com-
pressed, and the convolutional channel dimensions are transposed
with the time dimension before output. Subsequently, the output
feature maps need to be reshaped. This reshaping operation helps
map the feature maps of each time segment into sequence tokens,
facilitating their input into the self-attention module to capture
global dependencies.
Self-attention module In MI-EEG decoding, significant tempo-
ral dependencies often exist between different time segments,
which are closely related to the rhythmic activities of the brain
during task execution. Therefore, capturing the global correlations
among time-series features is crucial for improving classification
performance. In the architecture proposed in this study, a self-at-
tention mechanism is introduced after the feature extraction module
to enhance the model’s ability to selectively focus on key temporal
segments, thereby highlighting discriminative features and sup-
pressing redundant information'””’. The feature extraction module
outputs two types of feature representations: median-pooled fea-
tures and standard deviation-pooled features. Both are subsequent-
ly fed into the self-attention module to capture dependencies along
the temporal dimension. The self-attention module primarily con-
sists of two components.

The first layer is a multi-head attention mechanism. Self-
attention calculates the correlations between features using Query
(Q), Key (K), and Value (V). The input feature matrix is line-
arly projected into Q, K, and V, and the attention weights are

computed by scaling the dot product.
| OK”
Attention (Q, K, V) = softmax( /7) vV (1)
;

In formula (1), d, represents the dimension of the key vec-
tor, used for ensuring numerical stability. Unlike single-head at-
tention, multi-head attention (MHA) enables the model to jointly
attend to information from multiple subspaces of the representation

2] Therefore, the input features are mapped

at various positions
into Q, K, and V matrices through linear transformations. Differ-
ent learnable weight matrices are used to project Q, K, and V into
spaces of dimensions d,, d,, and d,, respectively. Subsequently,
attention computation is performed in parallel in each projected
space, yielding output representations from multiple attention
heads. These outputs are concatenated along the channel dimen-
sion and then projected back to the original feature dimension,

thereby forming the final attention representation.
MHA (Q, K, V) = Concat (head, , -+, head,) W’ 5
head, = Attention (QW°, KW', VW) (2)
In formula (2), W’ e R Wt e R W e R™**  and
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W’ e R"*%. The input feature dimension is evenly distributed to
each head: d, =d, =d, =d, /h .

The second layer is a fully connected feed-forward neural net-
work (FFN). Features at each time step are independently fed in-
to the FFN to further enhance nonlinear representation capabili-
ties. The FFN consists of two linear transformations with a GELU
activation therebetween, which can be expressed as:

x x

GELU (x) =7(l+erf(ﬁ) (3)

FFN (x) =GELU (xW, +b,) W, +b,)

In formula (3) , erf (x) denotes the Gaussian error function.
To ensure training stability and prevent gradient vanishing, layer
normalization is applied before the attention layer and the
FFN[37 -38]

ers” . The entire computational process is repeated N times with-

, and residual connections are employed in both lay-

in the self-attention module, where N represents the depth of the
self-attention module.

Multi-scale convolutional fusion module To more comprehen-
sively explore the correlations between temporal features of differ-
ent modalities, a Multi-scale Convolutional Fusion (MCF) module
is introduced after the self-attention module. Compared with using
a single convolutional kernel to learn the connections between two
different features, the MCF achieves multi-scale fusion of cross-
modal features by parallelly configuring multiple convolutional
kernels. Following the convolutional layers, batch normalization
layers and ELU activation are further applied. In this way, the
median-pooled features and standard deviation-pooled features are
fused together, generating more discriminative features for final
classification.

Multi-scale Convolutional Fusion

Conv2D Conv2D Conv2D
Kernel size:(1x2) Kernel size:(1x3) Kernel size:(1x5)
BatchNorm 2D BatchNorm 2D BatchNorm 2D

Fig. 2 Architecture of the multi-scale convolutional fusion module

Classification Based on the features extracted above, a classifier
is designed to provide the final classification results. A fully con-
nected (FC) layer is used to classify the aforementioned features,
and the output is passed through a softmax function to generate
prediction probabilities. The label with the highest probability is
considered the final result.
Data augmentation

For deep neural network-based MI-EEG decoding, model
performance is highly dependent on the quantity and diversity of

training samples. However, EEG data collection is time-consuming

and resource-constrained, resulting in a relative scarcity of real
samples available for training, which can easily lead to overfitting.
To address this, a common practice is to generate additional sam-
ples from the original training set through data augmentation to en-

120:2638 3290 por the architecture pro-

rich the training distribution
posed in this study, a data augmentation strategy that combines
signal partitioning and smooth transition splicing is adoped. Spe-
cifically, each EEG trial belonging to the same class is uniformly
divided into "N" _"s" segments along the temporal dimension to
ensure each sub-segment has a consistent length. Subsequently,
corresponding segments from different trials are randomly selected
and sequentially reassembled in chronological order to form new
EEG sequences. Unlike the direct splicing methods used in previ-
ous approaches, a smooth transition splicing mechanism is intro-
duced at the segment junctions, which better avoids artifacts
caused by abrupt changes at segment boundaries, making the gen-
erated augmented data more closely resemble real EEG signals in

terms of temporal continuity.

Experimental Methods
Datasets

To validate the effectiveness of the proposed model in motor
imagery electroencephalogram (MI-EEG) decoding, this study u-
tilized publicly available datasets from the 4" Brain-Computer In-
terface Competition ( BCI Competition IV ) organized by Tech-
nische Universitit Berlin (TU Berlin) ; Dataset 2a ( BCI-IV-2a)
and Dataset 2b (BCI-IV-2b) " The datasets feature rigorous ex-
perimental design and publicly available protocols, have been
widely adopted internationally, and are recognized as a standard
benchmark. Their use ensures the comparability of experimental
results and the generalizability of research findings, and they have
been extensively applied in motor imagery-related brain-computer
interface studies. Therefore, in this study, a comprehensive eval-
uation of the proposed network was conducted on these datasets.
bbic-iv-2a  The BCI-IV-2a dataset contains EEG data from 9
healthy subjects. Each subject performed four different motor im-
agery tasks: imagination of left hand, right hand, both feet, and
tongue movements. EEG signals were recorded using 22 Ag/AgCl
electrodes at a sampling rate of 250 Hz. During the experiment,
data were collected from each subject on two separate dates for
training and testing purposes, respectively. Each experimental
session consists of 288 trials, with each of the four different motor
imagery tasks comprising 72 trials. In this study, the training data
were sourced from the first session, while the test data were re-
cordings from the second session.
bbic-iv-2b  The BCI-IV-2b dataset also includes EEG data from
9 healthy subjects. Participants were required to perform two dif-
ferent motor imagery tasks: left-hand and right-hand imagination.
EEG signals were recorded using three bipolar electrodes ( C3,
Cz, C4) at a sampling rate of 250 Hz. For each subject, a total of
five experimental sessions were conducted. The first two sessions
without feedback contained 120 trials each, while the subsequent
three sessions with feedback contained 160 trials each. During the

experiment , the first three sessions were used for training, while
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the last two sessions were used for testing. For all datasets, the
EEG data for each trial were extracted using the same time window
[0, 4] seconds relative to the cue onset. Each trial was treated as
a sample, and each sample was represented as a two-dimensional
matrix of channel x sample.
Comparative methods

To evaluate the performance of the proposed network, this
study compared it with four leading deep learning networks. In ex-
periments, all comparative models were retested and validated on
both datasets. Brief descriptions of the comparative models are
provided below.
Deep convolutional neural network The Deep Convolutional
Neural Network is a deep learning model based on the classical
Convolutional Neural Network architecture, which has been dem-
onstrated to perform well in MI-EEG decoding tasks'™".
EEGNet-8, 2 EEGNet-8, 2 is a lightweight neural network spe-
cifically designed for EEG signals, particularly suitable for brain-

21
211 To ensure

computer interface tasks at a 128 Hz sampling rate
fairness, all raw EEG data in this study were resampled to
128 Hz.
FBCNet

frequency bands of EEG signals and utilizes a variance pooling

FBCNet extracts discriminative features from multiple

layer to reduce feature dimensions, thereby achieving efficient fea-
ture extraction™. This model has demonstrated outstanding per-
formance on multiple public MI-EEG datasets.

EEG decoder EEG Conformer is a compact convolutional trans-
former that integrates convolutional modules with self-attention
modules to extract both local and global features from EEG
data™’. This model has demonstrated state-of-the-art performance
in MI-EEG decoding tasks.

Experimental details

Default network configuration used in this study: Each 2D
convolutional layer had an output channel count of 8, and the ker-
nel sizes of the temporal filter bank were set to different values.
The depth (N) of the self-attention module and the attention di-
mension per head were set to 4 and 8, respectively. Considering
the trial duration of 4 s across all datasets and a sampling rate of
250 Hz, the time segment was set to 0.5 s for data augmentation,
meaning each time segment consisted of 0.5 s of trials.

This study implemented all experiments using PyTorch ' and
performed training on two NVIDIA RTX 3080Ti GPUs. The mod-
els were trained with a cross-entropy loss function, with a maxi-
mum of 1 800 training epochs. The Adam optimizer' ' was em-
ployed with an initial learning rate set to 0.000 2. To evaluate the
decoding performance of different networks, classification accuracy
and the Kappa coefficient were used as evaluation indicators'™ .
The Kappa coefficient was calculated using following formula .

P, -P,
T1-p, 4)

In the experiments, classification accuracy and the kappa co-

k

efficient were used to evaluate the decoding performance of differ-
ent networks. In formula (4), P, represents the average classifi-
cation accuracy, and P, denotes the classification consistency
based on chance.

Results and Analysis
Overall decoding performance comparison

The proposed method was systematically evaluated on two
public motor imagery EEG datasets; BCI Competition IV 2a and
BCI Competition IV 2b. MI-EEG data represent typical multi-
channel time-series physiological signals, which identify subjects’
motor imagination categories from EEG signals according to their
different motor imaginations during the experiment. The BCI-IV-
2a dataset includes four-class motor imagery tasks (left hand,
right hand, both feet, and tongue) , while the BCI-IV-2b dataset
contains two-class motor imagery tasks ( left hand and right
hand). In this study, the performance of the proposed method was
compared with four representative deep learning methods. The o-
verall results are shown in Fig. 3 and Fig. 4. It can be observed
that the proposed method achieves the best performance in average
classification accuracy on both datasets, demonstrating its strong
decoding capability.

On the BCIC-IV-2a dataset, the proposed method achieved
an average accuracy of 84.36% and a kappa coefficient of 0. 791 4
on 9 subjects, both of which were the highest among all compara-
tive methods. The kappa coefficient is shown in Fig. 5. Compared
with Deep ConvNet, EEGNet-8, 2, and FBCNet, the accuracy
was improved by 13.38% , 11.87% , and 7.58% , respectively.
Even when compared with EEG Conformer, the proposed method
maintained an advantage with an improvement of 5. 75%. For
high-performance subjects such as A03, A07, and A09, the pro-
posed method achieved accuracy rates close to or exceeding 95% ,
significantly outperforming the comparative methods. These results
demonstrate that the introduced multi-scale convolutional fusion
module can effectively integrate multi-modal temporal features. By
combining spatially asymmetric convolutions with self-attention
mechanisms, it exhibits higher classification accuracy in cross-
temporal dependencies and spatial asymmetry.

Similarly, on the BCIC-IV-2b dataset, the proposed method
also demonstrated leading performance, achieving an average ac-
curacy of 89.98% and an average kappa coefficient of 0. 853 0.
Compared with EEGNet-8, 2 and FBCNet, the accuracy was im-
proved by 3. 73% and 7. 23% , respectively. Moreover, it
achieved optimal results in 7 out of the 9 subjects. Since this data-
set contains only three channels (C3, Cz, C4), the spatial infor-
mation is relatively limited. As a result, the performance gap be-
tween different methods was smaller compared with that observed
on BCIC-IV-2a. Nevertheless, under these conditions, the pro-
posed method still maintained a leading position.

From the overall trend, the performance improvement on
BCIC-IV-2a was significantly greater than that on BCIC-IV-2b.
The proposed method significantly enhanced MI-EEG accuracy by
effectively integrating multi-modal temporal and spatial features
through the multi-scale convolutional fusion module and capturing
cross-temporal dependencies with the self-attention module. Even
under conditions of limited channel numbers, the proposed ap-
proach maintained stable performance and surpassed existing
methods in most subjects, further validating the superiority of the

proposed network in multi-subject motor imagery decoding tasks.
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The above results demonstrate that the design combining multi-

in MI-EEG signals, thereby enhancing the reliability of brain-com-
scale convolutional fusion, self-attention mechanisms, and multi-

puter interface systems in practical applications.

modal feature aggregation can better identify classification patterns
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Ablation experiment analysis

In the proposed network, data augmentation, the self-atten-
tion module, and the Multi-scale Convolutional Fusion module are
key components. To validate their contributions to the overall clas-
sification performance, ablation experiments were conducted on the
BCIC-IV-2a and BCIC-IV-2b datasets. Specifically, each module
was individually removed, and the resulting changes in classifica-
tion accuracy on the two public datasets were observed. The results
in Table 1. From the perspective of data
augmentation’s effect, when the data augmentation module was re-
moved, the classification accuracy on both datasets showed a
significant decline. On BCIC-IV-2a, the accuracy dropped from
84.36% to 77.76% , and the kappa coefficient decreased from

are summarized

0.791 4 to 0.703 5. On BCIC-IV-2b, the accuracy fell from
89.64% t0 86.21% , and the kappa coefficient was reduced from
0.853 0 t00.816 1. These results indicate that the data augmenta-
tion strategy can effectively mitigate overfitting issues caused by
limited and non-stationary EEG data, thereby significantly enhan-
cing the model’s generalization capability. The study further inves-
tigated the role of the self-attention module. When the self-atten-
tion module was removed, the accuracy on BCIC-IV-2a decreased
to 82.85% , and the kappa coefficient dropped to 0. 771 3. On
BCIC-IV-2b, the accuracy fell to 88.54% , and the kappa coeffi-
cient was reduced to 0. 847 2. The results demonstrate that the
self-attention mechanism effectively captures global dependencies
across different time segments, thereby helping the model maintain
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stable decoding performance in cross-subject and cross-session
tasks. When the MCF module was removed, the model’s accuracy
on BCIC-IV-2a and BCIC-IV-2b decreased to 82.86% and
88.32% , respectively, while the kappa coefficients dropped to
0.771 5 and 0. 844 3, respectively. The MCF effectively integrates
the complementary information from average-pooled features and
variance-pooled features, enhancing the network’s ability to cap-
ture spatio-temporal characteristics, thereby significantly improving
the classification accuracy for MI-EEG. In summary, the purpose
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of the ablation experiments is to analyze the individual contribu-
tions and synergistic effects of each module within the network.
Both the self-attention module and the multi-scale convolutional fu-
sion module help enhance the discriminative capability of the
learned features, while data augmentation during training improves
the model’s generalization. The synergistic integration of these
three components significantly boosts the classification accuracy of
MI-EEG.
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Fig. 5 Comparison of model kappa coefficients on bbic-iv-2a and bbic-iv-2b

Table 1 Ablation study on bbic-iv-2a and bbic-iv-2b

Dataset Method Accuracy // % Kappa
beic-iv-2a  Our method-w/o data augmentation 77.76 0.703 5
Our method-w/o self-attention 82.85 0.771 3
Our method-w/0 mef 82.86 0.771 5
Our method 84.36 0.791 4
beic-iv-2b - Our method-w/o data augmentation 86.21 0.816 1
Our method-w/o self-attention 88.54 0.847 2
Our method-w/ 0 mef 88.32 0.844 3
Our method 88.98 0.853 0
Conclusions

In this study, a deep learning network based on multi-modal
temporal fusion and spatial asymmetry was proposed for MI-EEG
decoding. The model comprehensively captures temporal informa-

tion in EEG signals by employing multi-scale temporal convolutional

filters to extract dynamic features across different frequency bands
and time domains. The introduction of a spatially asymmetric conv-
olutional structure separately captures spatial information from e-
lectrodes in the left hemisphere, right hemisphere, and global
brain regions, thereby better characterizing the asymmetric activa-
tion patterns of the cerebral cortex during motor imagery tasks. The
integration of global median pooling and standard deviation pooling
into the self-attention module enables the learning of global de-
pendencies. Furthermore, a multi-scale convolutional fusion mod-
ule is designed to explore the correlations among temporal features
from different modalities. The data augmentation strategy effective-
ly mitigates overfitting issues caused by limited EEG data. Experi-
mental results on two public MI-EEG datasets demonstrated that
the proposed network achieved significantly higher classification
accuracy than existing methods. These outcomes fully validate the
effectiveness of multi-modal temporal information capture, spatially

asymmetric feature extraction, and self-attention mechanisms in
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EEG decoding. The main contribution of this work lies in substan-
tially improving the classification accuracy of MI-EEG decoding.
Future plans include extending this network to real-time online de-
coding tasks to further enhance its practicality and generalization
capability.
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for the

Improvement Project, which corroborates the academic and practi-

Guangdong Province Continuing Education Quality
cal value of this reform exploration from another perspective.

Conclusions and Prospects

The reform and exploration of the experimental and practical
teaching component in the " Teochew Gongfu Tea" course have
successfully integrated ICH transmission, technical skill develop-
ment, and innovation-oriented education. By constructing and im-
plementing the hybrid " Three-Dimensional Synergy, Four-Compe-
tency Progression, and Five-Integration" teaching model, it has
effectively addressed core challenges in intangible heritage pedago-
gy, including the disconnection between theory and practice, lim-
ited teaching contexts, and rigid evaluation systems, thereby en-
hancing students’ practical competence, innovative thinking, and
holistic professional development.

The laboratory serves not only as a venue for verifying scien-
tific principles, but also as a crucial platform for cultural inherit-
ance and the cultivation of innovative spirit and practical ability.
In the future, the course team will continue to deepen the reform.
On one hand, plans are underway to introduce artificial intelli-
gence and big data technologies to achieve more precise analysis
and personalized guidance for students’ experimental and practical
teaching processes and skill mastery. On the other hand, collabo-
ration with industry in " industry-university-research-application"
integration will be further strengthened. The establishment of
"ICH creative workshops" will be explored to expose student
works directly to market evaluation. This approach aims to realize

the creative transformation and innovative development of ICH
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