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Progressive Layered Extraction Network Based on Correla-
tion Sharing for Multi-target Prediction of Soil Nutrients
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Abstract With breakthroughs in data processing and pattern recognition through deep learning technologies, the use of advanced algorithmic models for analyzing
and interpreting soil spectral information has provided an efficient and economical method for soil quality assessment. However, traditional single-output networks
exhibit limitations in the prediction process, particularly in their inability to fully utilize the correlations among various elements. As a result, single-output networks
tend to be optimized for a single task, neglecting the interrelationships among different soil elements, which limits prediction accuracy and model generalizability.
To overcome this limitation, in this study, a multi-task learning architecture with a progressive extraction network was implemented for the simultaneous prediction
of multiple indicators in soil, including nitrogen (N), organic carbon (OC), calcium carbonate (CaCO,), cation exchange capacity (CEC), and pH. Further-
more, while incorporating the Pearson correlation coefficient, convolutional neural networks, long short-term memory networks and attention mechanisms were com-
bined to extract local abstract features from the original spectra, thereby further improving the model. This architecture is referred to as the Relevance-sharing Pro-
gressive Layered Extraction Network. The model employs an adaptive joint loss optimization method to update the weights of individual task losses in the multi-task

learning training process.
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Materials and Methods
Data source

The dataset consists of soil spectral samples collected from
the Land Use/Cover Area frame Statistical Survey (LUCAS) con-
ducted by Eurostat between 2008 and 2012. Sampling points were
distributed in 23 member states of the European Union. The main
sampling areas included cropland, forest land, and grassland. Soil
spectral measurements were obtained using a Foss XDS spectrome-
ter, with a wavelength range of 400 —2 500 nm, a resolution of

0.5 nm, and a total of 4 200 wavelength points'"’.

The spectral
data of all samples are shown in Fig. 1(a).

The LUCAS dataset encompasses a variety of physical, chem-
ical, and biological characteristics of soil. In terms of physico-
chemical attributes, the dataset provides detailed records of the
following indicators: pH, organic carbon (OC) content, nutrient
concentrations including nitrogen and calcium carbonate which are
essential for plant growth, as well as cation exchange capacity,
which contains extensive soil information.

Spectral data processing

This study was condcuted to predict multiple soil characteris-
tics, specifically focusing on five characteristics; pH ( pH in
H,0), organic carbon content (OC) , total nitrogen content (N) ,
cation exchange capacity ( CEC ), and calcium carbonate
(CaCO;). A total of 19 036 samples were selected for the experi-

ment and randomly divided into a training set (15 228) and a test
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set (3 808) in a4 : 1 ratio. Due to the significant baseline drift
in the spectra (Fig. 1(a) ), in this study, Standard Normal Vari-
ate transformation (SNV) ™' was employed to eliminate baseline
drift in the spectra. The soil spectral curves after SNV processing

are shown in Fig. 1(b).
MTL Neural Network Prediction

Progressive layered extraction network

The Progressive Layered Extraction (PLE) network™ is a
novel architecture proposed for the field of Multi — Task Learning
(MTL), designed to address common issues in traditional MTL
such as negative transfer and the seesaw phenomenon. As shown
in Fig. 2(a), the PLE model explicitly separates the feature ex-
traction layer into two components: Shared Experts and Task —
Specific Experts. It introduces a gating network to balance infor-
mation sharing and task-specific information. In the figure, Expert
A and Expert B represent the respective expert systems for Task A
and Task B, while Shared denotes the shared expert system.

The expert system is a specific deep learning network tailored
for task prediction. Therefore, for any task k, e, represents the
feature matrix extracted by its expert network. S, (x) concatenates
the features extracted by the Shared Experts and the Task — Specif-
ic Experts of task k, forming a selected matrix composed of the
outputs from the Shared Experts and the Experts-K for task k.

Sk(x) = [E(T/, 1 E(Tk,2> s T E(Tk,n) s E(T\ 1) E(T.\»,z> T

B ()

The structure of the gating network is typically a single-layer
feedforward network, as shown in the lower right part of Fig. 2(a).
The calculation method for the Gate is as follows:

w' (x) = softmax (ng ) (2)

In the equation, x represents the input; w'(x) denotes the
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weighting function for the k" task ; and softmax () is the activation
function, which assigns appropriate weight vectors to the outputs of
the expert networks and shared network; and wz represents the
weight matrix in the gating network. The output of the Gate can be
expressed as:

g (x) =u'(x) $"(x) (3)

The output of the gating unit is fed into the tower network,
where the data is processed to obtain the final prediction result.
The calculation method of the tower network is as follows:

¥ (x) =t"(g" (x) (4)

In the equation, t* represents the computation of the tower
network for task &, while y* (x) denotes the predicted output for
task k. To accommodate the preference for abstract features among
different tasks,
elements with strong correlations. As shown in Fig. 2(b), based

on the PLE architecture, when Task A and Task B exhibit high

this experiment focused on predictive task
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correlation, the outputs from the first-layer experts of the two tasks
are partially shared. After a weighted summation through the ga-
ting network, they are fed into the next layer of experts for further
feature extraction. This architecture is referred to as the Rele-
vance-sharing Progressive Layered Extraction network ( R-PLE).

The input to the gating network in the R-PLE model can be ex-

pressed as;
k _ T T T s, 1 T
S (x) = [E(k,l) ’ E(k,Z) s T E(k,n) , E )’ E(x,Z)’ T,
T T T
E(s,n) ’ E(mz) s T E(R, n) (5)

E{, . represents the expert layer output of tasks highly corre-
lated with task k. After integrating partial features, the input and
output feature dimensions remain unchanged. The optimized model
more effectively leverages inter-task correlations and shares more
critical features, thereby further enhancing the gating network’s

filtering capability.

Absorbance

Fig. 1 Dimensionality reducing near infrared (NIR) spectra of LUCAS dataset (a) and SNV-preprocessed NIR spectra (b)
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Fig. 2 Forecast model of PLE (a) and forecast model of R-PLE (b)

Model Design

Model structure

Based on the Progressive Layered Extraction ( PLE) network
and the correlations between different tasks, a multi-task learning
network called R-PLE with dedicated expert layers was proposed in
this study. This structure is referred to as RCLA-PLE in this stud-
y. Fig. 3 illustrates the overall architecture of the system and its
detailed composition. The right half provides an overview of the

entire system, showcasing the main components and their interrela-
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tionships, offering a macro-level perspective. The left half (P1-
P3) presents detailed cross-sectional views of this overall architec-
ture, delving into the internal structure and operational principles
of each key component.

The expert layer is designed to adaptively extract input feature
information. The model adopts a two-layer feature extraction mod-
ule (Extraction Network_1 to Extraction Network_2), where the
network input is one-dimensional raw soil Vis-NIR data, and the

output consists of multiple properties of the target soil. In processing
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one-dimensional sequential data, deep convolutional networks
(CNN)"™ can progressively extract features from low-level to high-
level by stacking multiple convolutional layers, thereby enhancing
the model’s expressive capability. Based on this, the first-layer
feature extraction module in this study adopts a structure composed
of seven layers of stacked one-dimensional deep convolutional
blocks (ConvlD block_1 to ConvlD block_7) to extract different
local features from the input spectrum. Each layer of convolutional
blocks includes convolution operations, activation functions, and
pooling operations. The design of the second feature extraction lay-
er ( Extraction Network-2) aims to further enhance the model’s
performance. To capture the potential relationships between spec-
tral data of different wavelength bands, a Long Short — Term Mem-
ory (LSTM) network" is introduced. Since convolutional opera-
tions effectively extract local patterns and spatial information, the
second expert layer adopts a single convolutional structure and
multiple LSTM layers for further processing. The LSTM module
consists of two LSTM layers. The first LSTM layer takes the output
feature sequence extracted by the CNN module as input and gener-
ates features for each time step. The number of hidden memory u-
nits in the first LSTM layer is set to 32, which equals the dimen-
sionality of the output features from this layer. The number of hid-
den memory units in the second layer is set to 8, enabling the ex-
traction of higher-level local and abstract features from the output
features of the first layer. Finally, the output of the second LSTM
layer at the last time step is passed to the Tower layer for the final
regression prediction.
Joint loss optimization

In conventional multi-task models, the data distribution and
importance of different tasks often vary. Due to significant differ-
ences in loss scales among different task outputs, a weighted sum
of each task'® is selected as the minimized adaptation loss for
multi-task learning to prevent the overall model loss from being
dominated by a single task. It can generally be expressed as:

Lyp = ;WLL;, (6)

1

5 1 5
L (W7 0’15 0-23 ) US) :T,Z?LI(W) +i;l0g0'i (7)

In this study, uncertainty optimization was employed for the
multi-task learning training process. The final loss function can
be expressed as Equation (7). Through maximization of the
Gaussian likelihood, the task uncertainty g, is transformed into an
adaptive loss weight of 1/(2¢° ). During training, both the model
parameters W and the uncertainty parameters ¢; are optimized
simultaneously. Tasks with higher uncertainty automatically re-
ceive smaller weights, thereby achieving automatic balancing of

Table 2 Comparison of proposed framework with previous works

the multi-task loss.

Conclusions and Discussion

As shown in Fig. 4, the scatter points of the RCLA-PLE
model are tightly clustered near the diagonal line, particularly for
pH predictions, which demonstrate lower errors and better fitting
performance. In the OC scatter plot, while the median predictions
are relatively dispersed, the diagonal region shows a higher con-
centration of points with denser and more compact distribution, in-
dicating smaller and more stable prediction errors of the model.
Furthermore, in the CaCO, predictions, the scatter points of the
RCLA-PLE model are evenly distributed along the diagonal line,
indicating that its predictions are closer to the true values. The
model performs optimally in N predictions, demonstrating that
RCLA-PLE can effectively capture the spatial distribution and tem-
poral dynamics of nitrogen content.
Model comparison

To further evaluate the performance of different modeling ap-
proaches, the results of the RCLA-PLE model proposed in this pa-
per were compared with the single-task convolutional neural net-
work (CNN) used by Padarian e al. ") the multi-task convolu-
tional network ( Multi-CNN) proposed by Padarian et al. in the
same year!) | the long short-term memory (LSTM) network used
by Singh™’, and the combined CNN and GRU model (CCNVR)
used by Yang’'. The model’s performance was evaluated using the
following three metrics; Root Mean Square Error (RMSE) , Coeffi-
cient of Determination (R”), and Mean Absolute Error (MAE).
The complete set of results is presented in Table 2. Due to the cor-
relations among different soil properties, Padarian et al. found that
neural networks can improve model performance when these corre-
lations are considered. In this study, we leveraged data correla-
tions to optimize the model’s fitting capability, and focused not on-
ly on single-element output methods but also on multi-attribute out-
put approaches, further validating the effectiveness of the proposed
model. Moreover, previous studies applied different dataset divi-
sions and employed distinct preprocessing methods (e. g. , the 2D
spectral maps in Padarian et al. and the multi-spectral preprocess-
ing in Tsakiridis et al. (2020) [97). The results demonstrate that
RCLA-PLE can accurately predict each soil property. Except for
CEC, where it slightly underperforms compared with the Long
Short-Term Memory ( LSTM) model used by Simranjit et al. , it
surpasses all previous single-task and multi-task models in all other

aspects.

Padarian et al. |7 Padarian et al. |7

Soil properties Proposed Singh et al. (8] (LSTM) (CNN) ( Multi-CNN) Yangrw (CNN-GRU)
RMSE R? MAE RMSE R? MAE RMSE R? RMSE R? RMSE R?

N 0.91 0.92 0.53 1.15 0.91 0.64 1.54 0.83 1.06 0.60 0.45 0.70

oC 0.67 0.94 9.2454 23.25 0.94 11.24 32.14 0.88 16.82 0.69 6.40 0.73

CEC 5.85 0.75 3.9871 6.75 0.77 3.89 8.58 0.66 6.51 0.63 3.30 0.73

pH 0.38 0.91 0.2753  0.42 0.90 0.32 0.54 0.87 0.53 0.84 0.35 0.86
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Fig. 4 RCLA-PLE scatter plot of measured and predicted values for the five soil properties

Conclusions

In this study, correlation coefficient algorithms were integrated
with the advantages of multi-task learning to propose a novel
RCLA-PLE algorithm. Initially, local features between different
elements are shared based on the strength of their correlations.
Subsequently, dedicated expert layers composed of CNN, LSTM,
and Attention networks are employed to capture intricate relationships

among these features. Finally, the features are combined according
to their correlation strengths, resulting in more accurate prediction
outcomes. Through the construction of multi-task learning models
using the near-infrared spectral dataset from the LUCAS database,
the validity of the conclusion that multi-task learning outperforms
single-task learning was verified. The results demonstrated that the

(Continued on page 41)
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demonstrate MCM-Net’s superior boundary smoothness and object
integrity, particularly in complex urban scenes. These quantitative

and qualitative results confirm the model’s robust segmentation ca-

pability on high-resolution imagery.

Table 2 Experimental results on the ISPRS vaihingen dataset

Model Background Tmp. Surf Building Low. Veg Tree Car mF1 mloU
ABCNet ResNet18 84.84 91.29 65.42 82.14 72.51 87.39 78.15
DeepLabV3 + ResNet50 85.21 91.98 66.31 82.31 76.91 88.31 79.51
Unetformer ResNet18 85.41 92.11 65.46 82.55 80.21 89.88 81.99
RS3Mamba ResNet18 85.98 93.20 67.11 82.89 81.46 90.19 82.93
CM-Net ResNetl8 86.24 92.48 66.52 82.71 82.21 90. 11 83.01
MCM-Net ResNet18 86.37 93.12 67.23 83.11 82.71 90.73 83.65

Conclusions and Discussion

To address the complex challenges in remote sensing image
semantic segmentation, a dual-branch segmentation model based
on visual state space architecture was proposed in this study. The
MCM-Net framework employs two parallel branches to extract local
features ( detail preservation) and global contextual representations
(long-range dependencies) respectively. Experimental results on
LoveDA and Vaihingen benchmarks demonstrate that MCM-Net
outperforms state-of-the-art methods. This work provides a new
paradigm for fusing local processing and global reasoning in remote
sensing segmentation, with potential extensibility to other dense
prediction tasks.
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RCLA-PLE algorithm not only surpassed other multi-task models
but also significantly outperformed all single-task models. There-
fore, the RCLA-PLE model can effectively capture relationships
within data while better utilizing potential information in different
datasets to enhance predictive performance, establishing itself as
an efficient multi-task learning algorithm.
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