Determination of Total Flavonoids in Milk Powder by Spectrophotometry

Hong YUE¹, Shuo TANG¹, Jianying LIANG², Xiaoyan HUANG², Wenhui HU², Lijun LIU², Xiaoli WU^{1*}, Xue HU¹
1. Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China; 2. Key Laboratory of Risk Prevention and Control Technology for Bovine, Ovine Milk and Meat Products, State Administration for Market Regulation, Hohhot 010110, China

Abstract [Objectives] Based on spectrophotometry, a method for determining the total flavonoid content in milk powder was established by optimizing sample pretreatment conditions, and method validation was performed. [Methods] Total flavonoids in milk powder were extracted with ethanol using 45 °C water bath ultrasonication for 60 min. Flavonoids contain a benzopyran ring structure and react with aluminum nitrate in a potassium acetate environment to form a yellow complex. The absorbance of this complex was measured at 420 nm for quantitative determination. [Results] The method exhibited a good linear relationship within the range of 0.2 – 1.0 mg. The limit of detection (LOD) was 0.05 g/100 g, and the limit of quantification (LOQ) was 0.3 g/100 g. When the spiked amount of total flavonoids was in the range of 0.3% to 1.0%, the spike recovery rates were 99.3% to 103.4%, and the relative standard deviations (RSDs) were less than 3.0%. [Conclusions] This method offers advantages such as rapidness, accuracy, good stability, and high sensitivity, and can be used for the detection of total flavonoid content in milk powder.

Key words Spectrophotometry, Total flavonoids, Yellow complex, Benzopyran ring, Rutin

0 Introduction

Flavonoids are derivatives of chromone or chromane. They generally refer to a series of compounds formed by two benzene rings (A-ring and B-ring) connected through a central three-carbon atom, with the basic skeleton being C_6 - C_3 - C_6 . The C_3 part can be an aliphatic chain or form six-membered and five-membered rings with the C_6 part. Many flavonoids possess medicinal value. These compounds can exert anti-inflammatory, anti-allergic, and antibacterial effects. They can also lower blood pressure, reduce the deposition of cholesterol and blood lipids on blood vessel walls, scavenge free radicals in the body, and show significant efficacy in improving blood circulation [1-3].

Due to their multiple effects and the maturation of their identification and extraction technologies, flavonoids are currently used as food additives in the production of beverages, alcoholic drinks, baked goods, and dairy products. They impart no off-flavors and can preserve the original food aroma. Milk powder contains various nutrients such as protein, fat, lactose, vitamins, and trace elements. Therefore, it is anticipated that milk powder supplemented with flavonoids will become a new favorite in the natural health market. Developing a method for detecting total flavonoids in milk powder provides crucial technical support for product quality control [4-6].

The main methods for detecting total flavonoids include spectrophotometry, thin-layer chromatography-fluorospectrophotometry, high-performance liquid chromatography (HPLC), and high-

performance capillary electrophoresis (HPCE). The principles of these methods differ, leading to inconsistent results in measured flavonoid content and a lack of unified standards. Among them, thin-layer chromatography-fluorospectrophotometry is only suitable for trace analysis and has limited application scope. When there are many interfering components, the determination results can be affected. Therefore, separation conditions must be strictly controlled, and clear color spots must be selected under a fluorescent lamp for measurement^[7-9]. Although HPLC and HPCE offer good reproducibility and high recovery rates, they have higher equipment requirements, and standard reference materials are not readily available, which limits their application to some extent. Spectrophotometry has the advantages of good repeatability, accuracy, simplicity, ease of mastery, and the requirement for inexpensive and readily available reagents. Ultraviolet-visible spectroscopy (UV-Vis) is electronic spectroscopy and possesses comprehensive and holistic chemical information characteristics. Simultaneously, the instruments used for this method are inexpensive, the analysis cost is low, the analysis speed is fast, sample pretreatment is simple, and detection sensitivity is high. Therefore, it has applications in multiple fields such as quality control of traditional Chinese medicine, food origin identification, food quality control, and identification of counterfeit liquor [10-13].

This study applied a spectrophotometer to detect the total flavonoid content in milk powder. It primarily investigated extraction solvent, extraction temperature and time, extract aspiration volume, and detection wavelength. A systematic method validation was also performed, including the study of limit of detection (LOD) and limit of quantification (LOQ). By adding different concentrations of rutin standard solution to milk powder, the recovery rate and repeatability under different spiking concentrations were studied. The selectivity and robustness of the method were

Received; June 19, 2025 Accepted; September 30, 2025 Supported by Key Research and Development and Achievement Transformation Plan Project of Inner Mongolia Autonomous Region (2023 YFHH0093).

 \ast Corresponding author. Xiaoli WU, intermediate engineer, master's degree, research fields; food safety risk management.

also studied. Ultimately, an analytical method for determining total flavonoids in milk powder was established. This method features simple sample pretreatment, high sensitivity, good accuracy, excellent reproducibility, ease of operation, and convenience for promotion.

1 Materials and methods

- **1.1 Materials and reagents** Ethanol, Aluminum Nitrate, Potassium Acetate (analytical grade, Tianjin Damao Chemical Reagent Factory); Rutin (standard substance, purity ≥ 95%, 100 mg, Shanghai Anpel Laboratory Technologies Inc.).
- 1.2 Instruments and equipment Spectrophotometer TU-1810 (Beijing Purkinje General Instrument Co., Ltd.); Analytical Balance AB265-S (METTLER-TOLEDO, Switzerland); Ultrasonic Cleaner KQ-300 (Kunshan Ultrasonic Instrument Co., Ltd.); Vortex Mixer MS3 (IKA Works, Inc.).

1.3 Methods

- **1.3.1** Rutin standard stock solution (1.0 mg/mL). 50 mg of rutin standard substance, dried to constant weight (dried under reduced pressure at 120 $^{\circ}$ C), was accurately weighed, dissolved with anhydrous ethanol, and diluted to volume in a 50 mL volumetric flask.
- 1.3.2 Standard curve construction. 0.2, 0.4, 0.6, 0.8, and 1.0 mL of rutin standard stock solution were accurately pipetted into separate 50 mL volumetric flasks. Anhydrous ethanol was added to bring the total volume to 15 mL. Then, 1 mL of aluminum nitrate solution and 1 mL of potassium acetate solution were added sequentially, and the mixture was shaken well. Water was added to the mark, the flask was shaken well, and the solution was allowed to stand for 1 h. The absorbance was measured at 420 nm using a 2 cm cuvette, with a 30% ethanol solution as the blank. A standard curve was plotted with the mass of rutin in 50 mL (mg) as the abscissa and absorbance as the ordinate, or calculated using a direct regression equation.
- 1.3.3 Sample preparation. Whole milk powder was selected as the experimental sample. Whole milk powder has comprehensive components without special processing and is a typical representative sample of milk powder. 2 g of milk powder sample (weighed accurately to 0.1 mg) was placed into a 50 mL volumetric flask. 10 mL of water was added and dissolved thoroughly. 35 mL of ethanol was added and mixed well. The mixture was ultrasonicated in a 45 °C water bath for 60 min to ensure complete extraction of total flavonoids from the sample. After ultrasonication, the mixture was cooled to room temperature. The volume was made up to the mark with ethanol and mixed well. The mixture was centrifuged at 4 °C and 5 000 r/min for 10 min. The supernatant (sample extract solution) after centrifugation was reserved for use [14-17].
- 2.0 mL of the sample extract solution to be tested (the volume can be adjusted according to the sample content) was accurately pipetted into a 50 mL volumetric flask. The procedure described in Section 1.3.2 was followed. The absorbance of the test

solution was measured at a wavelength of 420 nm using a 2 cm cuvette, with the sample blank (Section 1.3.2) as the reference. The content of flavonoid compounds in the test solution (mg) was determined by consulting the standard curve or calculated using the regression equation. The concentration of the test solution was obtained from the standard curve, and its absorbance value should be within the linear range of the standard curve.

- 1.3.4 Blank test. The procedure described in Section 1.3.2 was followed, except that no sample was added.
- **1.3.5** Sample content calculation. The total flavonoid content in the sample was calculated using Equation (1).

$$X = \frac{C \times V \times n}{m \times 1\ 000} \times 100 \tag{1}$$

where X is the total content of flavonoid compounds, in g/100 g; C is the mass of rutin in the sample colorimetric solution obtained from the standard curve or calculated by the linear regression equation, in milligrams (mg); V is the constant volume, in milliliters (mL); m is the mass of the sample, in grams (g); n is the dilution factor. The calculation result was retained to two decimal places.

1.4 Method validation Precision, Recovery, and Repeatability Test: Blank milk powder samples were spiked with low, medium, and high concentration levels. Six parallel determinations were performed for each level. The detection results and recovery rates of the spiked samples were analyzed, and the relative standard deviation (*RSD*) was calculated.

LOD and LOQ Experiment: The limit of detection (LOD) was calculated as the average value of 10 blank sample detections plus 3 times the standard deviation. Total flavonoids were added to blank milk powder samples such that the detected absorbance of the sample was 0.2, which meets the minimum absorbance value requirement for quantitative analysis according to the Lambert-Beer law. The amount added at this point was taken as the limit of quantification (LOQ). The LOD and LOQ for this method were calculated [18-20].

2 Results and analysis

2.1 Selection of extraction solvent and sample weight Total flavonoids are generally insoluble or poorly soluble in water but soluble in organic solvents such as methanol, ethanol, ethyl acetate, and ether. However, considering that directly adding organic solvents to milk powder samples will easily cause protein coagulation and precipitation, encapsulating the total flavonoids and increasing extraction difficulty, water should first be added to fully dissolve the milk powder sample before extraction. After dissolving 2 g of milk powder in water, ethanol was added for extraction. The effects of the amounts of water and ethanol added on the extract were investigated [21-25], and the results are shown in Table 1.

As shown in Table 1, when the water added increased from $10\ \text{mL}$ to $15\ \text{mL}$ and the ethanol added decreased from $40\ \text{mL}$ to $35\ \text{mL}$, the extract solution remained clear. When the water added

increased to 20 mL and the ethanol added decreased to 30 mL, the extract solution became turbid, indicating that the added ethanol was insufficient to precipitate the protein. Since total flavonoids are insoluble in water but soluble in ethanol, the optimal extraction solvent was chosen as 10~mL of water and 40~mL of ethanol $^{[32-35]}$.

Table 1 Amounts of water and ethanol added to the extract using different pretreatment methods for whole milk powder

No.	Sample weight // g	Water added//mL	Ethanol added//mL	Constant volume // mL	Extract solution	Reaction solution
1#	2	10	40	50	Clear	Clear
2#	2	15	35	50	Clear	Clear
3#	2	20	30	50	Turbid	Turbid
4#	3	10	40	50	Clear	Turbid
5#	4	10	40	50	Clear	Turbid

When the sample weight was increased to more than $2~\mathrm{g}$, although the extract solution was clear, the solution became turbid after adding aluminum nitrate and potassium acetate for the derivatization reaction, making subsequent absorbance measurement impossible. Therefore, the optimal sample weight was $2~\mathrm{g}$.

2.2 Selection of extraction temperature Flavonoids have moderate heat resistance, and heating can improve dissolution efficiency. The recovery rate for milk powder samples spiked with a theoretical amount of 0.5% was investigated at extraction temperatures of 35, 45, and 60 °C to evaluate the extraction efficiency at different temperatures [22–26].

Table 2 Detection results of total flavonoids in milk powder at different extraction temperatures

Extraction temperature // °C	Average detection result // %	Recovery rate // %	RSD // %
30	0.43	86	4.5
45	0.48	96	3.3
60	0.41	82	3.6

As shown in Table 2, when the extraction temperature increased from 30 $^{\circ}\mathrm{C}$ to 45 $^{\circ}\mathrm{C}$, the recovery rate increased from 86% to 96%. When the temperature further increased to 60 $^{\circ}\mathrm{C}$, the recovery rate significantly decreased compared to 45 $^{\circ}\mathrm{C}$. The increase in temperature may cause loss of total flavonoid substances. The extraction efficiency was optimal at 45 $^{\circ}\mathrm{C}$.

2.3 Selection of extraction time Extraction was performed in a 45 $^{\circ}$ C water bath. The effect of different extraction times (30 min, 45 min, 60 min, 75 min) [27-34] on the recovery rate was investigated. Recovery experiments were conducted by adding 0.5% total flavonoids to blank milk powder.

Table 3 Detection results of total flavonoids in milk powder at different extraction times

Extraction	Average detection	Recovery	RSD // %
time//min	result // %	rate // %	
30	0.24	48	4.5
45	0.38	75	3.1
60	0.49	98	3.3
75	0.48	96	3.2

As shown in Table 3, when the extraction time increased from 30 min to 60 min, the recovery rate increased from 48% to 98%. Prolonging the extraction time significantly improved the extraction

efficiency. When the extraction time was further extended from 60 min to 75 min, the recovery rate no longer increased. Therefore, the optimal extraction time was 60 min.

2.4 Selection of extract aspiration volume After determining the sample weight, extraction solvent, extraction temperature, and time, a certain volume of the extract needed to be aspirated for the derivatization reaction before measuring absorbance. The aspiration volume of the extract was investigated [34-39], and the results are shown in Table 4.

Table 4 Aspiration volume of extract

Test sample	Extract volume	Detection	Reaction
rest sample	aspirated//mL	deviation	phenomenon
Milk powder spiked	1	5.8	Clear
at 0.05%	2	2.1	Clear
	3	10.2	Turbid
	4	63.3	Turbid
	5	218.4	Turbid

As can be seen from Table 4, when the aspiration volume of the extract was 1 mL or 2 mL, the derivatization reaction solution appeared clear. However, when the aspiration volume was increased to 3 mL, the reaction solution became turbid, making absorbance measurement impossible. Considering that the detection deviation was smallest when the aspiration volume was 2 mL, the optimal aspiration volume was determined to be 2 mL.

2.5 Standard curve, LOD, and LOQ The standard solutions were measured according to the method described in Section 1.3.2. The absorbance of each standard solution was measured at 420 nm. The standard curve was plotted with the total flavonoid content in the standard solution as the abscissa and absorbance as the ordinate, as shown in Fig. 1.

Regression equation: y = 1.057 6x - 0.004 8, with a linear range of 0.2 - 1.0 mg, correlation coefficient (r) of 0.999, LOD of 0.05%, and LOQ of 0.3%.

As shown in Fig. 1, this method exhibited a good linear relationship within the range of 0.2–1.0 mg, with a correlation coefficient r greater than 0.999 9. The average value of 10 blank sample detections plus 3 times the standard deviation resulted in 0.05%. Therefore, 0.05% was set as the LOD of this method. For the milk powder sample with a weight of 2 g, 0.3% standard substance was added. At this level, the absorbance was 0.2,

meeting the minimum absorbance value requirement for quantita-

tive analysis according to the Lambert-Beer law. Moreover, the spike recovery rate at this level ranged from 100.4% to 103.9%. Therefore, 0.3% was set as the LOO of this method.

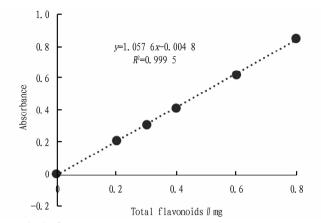


Fig. 1 Standard curve

2.6 Recovery rate Recovery experiments were conducted using milk powder as the matrix. Standard solutions at three concentration levels were added to investigate the recovery rate [39-44]. The detection results are shown in Table 5.

Table 5 Reco	very experim				
Test items	Background value	Theoretical spiked amount	Detection result	Recovery rate	Recovery rate CV
Total flavonoids	Not detected	0.3	0.30	102.7	1.28
			0.31	103.9	
			0.30	100.4	
			0.30	101.6	
			0.31	103.5	
			0.30	103.1	
		0.6	0.59	101.4	0.96
			0.61	103.4	
			0.60	101.4	
			0.60	101.4	
			0.62	103.4	
			0.60	102.4	
		1.0	0.98	99.3	0.55
			0.99	100.1	
			1.00	100.4	
			1.00	101.0	
			1.00	100.4	
			0.98	100.2	

Different mass concentrations of total flavonoid standard solution were added for spike recovery experiments, with six parallel determinations performed for each level. As shown in Table 5, when total flavonoids were added at 0.3%, 0.6%, and 1.0% per 100 g of sample, the recovery rates were 99.3% to 103.9%, indicating good recovery results.

2.7 Precision Sample solutions spiked with different mass concentrations were selected. Six parallel repeatability experiments were performed for each spiking concentration. The detection results and relative standard deviations are shown in Table 6.

Table 6 Precision of spiked samples

Spiked concentration	Result Average result		RSD	
0.30	0.30 - 0.31	0.30	1.70	
0.60	0.59 - 0.62	0.60	1.71	
1.00	0.98 - 1.00	0.99	0.99	

Repeatability experiments were conducted six times for milk powder samples spiked at 0.3%, 0.6%, and 1.0%. The detection result ranges and relative standard deviations are shown in Table 6. The relative standard deviations were all less than 3.0%, indicating that the accuracy of this method meets quantitative requirements and the method precision is good.

Conclusion

This study established a method for determining total flavonoids in milk powder based on spectrophotometry. Total flavonoids in milk powder were extracted with ethanol using 45 °C water bath ultrasonication for 60 min. Flavonoids contain a benzopyran ring structure and react with aluminum nitrate in a potassium acetate environment to form a yellow complex. The absorbance of this complex was measured at a wavelength of 420 nm for quantitative determination.

The method exhibited a good linear relationship within the range of 0.2 - 1.0 mg. The limit of detection was 0.05 g/100 g, and the limit of quantification was 0.3 g/100 g. When the spiked amount of total flavonoids was in the range of 0.3% to 1.0%, the spike recovery rates were 99.3% to 103.4%, and the relative standard deviations were less than 3.0%. The method has the advantages of being fast, accurate, stable, and highly sensitive, and can be used for the detection of total flavonoid content in milk powder.

References

- [1] LI DX, GUAN RF, HUANG HZ, et al. Extraction optimization and antioxidant activity comparison of flavonoids from three species of sea-buckthorn from Xinjiang [J]. Journal of Chinese Food Science, 2023, 23(4). (in Chinese).
- [2] LI XP, YU MX, ZHUANG TR, et al. Research progress on antitumor effects of flavonoid derivatives [J]. Acta Pharmaceutica Sinica, 2021, 56 (4): 913 - 923. (in Chinese).
- [3] NI XH, WANG HP. Extraction of total flavonoids from green tea with low eutectic solvent and its antioxidant activity [J]. Food and Machinery, 2022, 38(1). (in Chinese).
- [4] WANG J, MA CM, WANG D. Optimization of total flavonoids extraction from Ophiopogon japonicus by ultrasound-assistant deep eutectic solvent extraction and flavonoids antioxidative ability [J]. China Food Additives, 2023, 34(3). (in Chinese).
- [5] RU Q, JIN M, SU Y, et al. Research progress on synergistic effect of natural flavonoids [J]. Natural Product Research and Development, 2023, 35(3). (in Chinese).
- [6] CHENG L, JIANG W, CHEN G, et al. Research progress of pharmacological effects of flavonoids on ulcerative colitis [J]. Guangdong Chemical Industry, 2022, 49(14). (in Chinese).
- [7] DU HX, LIU YX, YAN ZJ, et al. Optimization of ultrasonic assistedgreen deep eutectic solvent extraction of flavonoids from jasmine [J]. Modern Food Science and Technology, 2021, 37(1): 199 - 206. (in Chinese).
- [8] YUAN XM, JIANG MW, HU ZZ, et al. Determination of total flavone

- content in Hawthorn and Hawthorn cultivars by polyamide adsorption-aluminum nitrate color developing method $[\,J\,]$. Food and Fermentation Industries, 1996(4); 27-30. (in Chinese).
- [9] ZHAO WZ, YU ZP, YU YD, et al. Research progress of polysaccharides from Stigma maydis[J]. Food Science, 2010, 31(11): 289 - 292. (in Chinese).
- [10] WU YN, LU XX, LIAN XJ, et al. Study on scavenging activity of free radicals by corn silk flavonoids [J]. Food Research and Development, 2009, 30(1): 5-8. (in Chinese).
- [11] TANG CL, WEI JC, TENG HL, et al. Research progress on anti-in-flammatory activity and mechanism of flavonoids [J]. Chinese Archives of Traditional Chinese Medicine, 2021(4). (in Chinese).
- [12] XIN YJ, LI Z. Study on ultrasonic-assisted extraction of total flavonoids from Scutellaria baicalensis and their antioxidant properties[J]. Shaanxi Journal of Agricultural Sciences, 2021(9). (in Chinese).
- [13] YAO YZ, ZHU Y, HE WZ, et al. Comparison of total flavonoids content in different varieties and growing periods of corn whisker[J]. Food Science and Technology, 2012, 37(5): 154-158. (in Chinese).
- [14] DUAN HB, LIANG YK. Extraction and antioxidant and antibacterial activity of dandelion polyphenols [J]. China Food Additives, 2017 (3): 80-86. (in Chinese).
- [15] LI KC, LU JF, HAN Z, et al. Optimization of extraction of total flavonoids from litchi shells using response surface methodology and analysis of antioxidant activity [J]. Food Research and Development, 2021, 42(10): 61-67. (in Chinese).
- [16] BAI SW, TANG C, TIAN J, et al. Extraction and antioxidant activity of total flavonoids from Sea Buckthorn Pomace [J]. Food Science, 2015, 36(10): 59-64. (in Chinese).
- [17] CUI P, CHEN ZR, SHI LG. Microwave extraction and free radical scavenging activity of total flavonoids from Ficus carica leaves [J]. Food Research and Development, 2018, 39(1): 141-145. (in Chinese).
- [18] SU S, WANG SX. Optimization of ultrasonic extraction process of total flavonoids from Ficus Carica leaves by response surface methodology [J]. Food Research and Development, 2019, 40(9): 101 – 106. (in Chinese).
- [19] SUN P, DONG PP, DONG DH, et al. Ultrasound-assisted deep eutectic solvent extraction of total flavonoids from Chrysanthemum indicum[J]. Science and Technology of Food Industry, 2020, 41 (20): 147 – 152. (in Chinese).
- [20] YIN CP, WU M, WANG ZB, et al. Analysis on accumulation characteristics of nine flavonoids in sorghum grains [J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(12). (in Chinese).
- [21] LIN CC, CHEN DW, DAI JG. Advances in synthetic biology of flavonoids[J]. Acta Pharmaceutica Sinica, 2022, 57(5). (in Chinese).
- [22] CHEN XQ, LIU LL, SUN TT, et al. Optimization of extraction of total phenolics and total flavonoids from Phellodendron amurense fruit by response surface method and their antioxidant activities[J]. Fine Chemicals, 2020(2). (in Chinese).
- [23] LI J, DU SB, YANG L, et al. Optimization of ultrasonic extraction process of total flavonoids from leaves of Syringa oblate by response surface methodology[J]. Journal of Guangdong Pharmaceutical University, 2022, 38(4). (in Chinese).
- [24] MA JK, HUANG XC, ZHANG JY, et al. Extraction optimization and antibacterial activity of total flavonoids in Moringa oleifera leaves by response surface methodology[J]. Food Research and Development, 2019 (15). (in Chinese).
- [25] DU YL, TIAN MY, LI YR, et al. Optimization of extraction technology of 4 flavonoids from Hawthorn leaves [J]. Chinese Traditional Patent Medicine, 2022, 44(10). (in Chinese).
- [26] FU YY, GU L, HE Y, et al. Research progress on the application of chamomile extract in cosmetics[J]. Flavour Fragrance Cosmetics, 2023 (2). (in Chinese).
- [27] ZHAO YQ, BU FZ, WANG Y, et al. Optimization of ultrasound-assis-

- ted extraction and antioxidant activities of flavonoids from Perilla frutescens leaves [J]. Food Research and Development, 2023, 44(6). (in Chinese).
- [28] RUAN MY. Determination of total flavonoids and polysaccharide contents in Tetrastigma hemsleyanum diels et gilg from different areas[J]. Modern Chemical Research, 2021(22). (in Chinese).
- [29] DESPRES A, PIZZI A, PASCH H, et al. Comparative 13C-NMR and matrix-assisted laser desorption/ionization time-of-flight analyses of species variation and structure maintenance during melamine-urea-formaldehyde resin preparation [J]. Journal of Applied Polymer Science, 2007, 106(2): 1106-1128.
- [30] NAKAMURA T, NAKAZAWA Y, ONIZUKA S, et al. Antimutagenicity of Tochu tea (an aqueous extract of Eucommia ulmoides leaves). 1. The clastogen-suppressing effects of Tochu tea in CHO cells and mice [J]. Mutation Research, 1997, 388: 7-20.
- [31] LIPORACE FA, BREITBART EA, YOON RS, et al. The effect of locally delivered recombinant human bone morphogenetic protein-2 with hydroxyapatite/tri calcium phosphate on the biomechanical properties of bone in diabetes-related osteoporosis [J]. Journal of Orthopaedics and Traumatology, 2015, 16(2): 151-159.
- [32] ZHENG ZW, CHEN YH, WU DY, et al. Development of an accurate and proactive immunomodulatory strategy to improve bone substitute material-mediated osteogenesis and angiogenesis [J]. Theranostics, 2018, 8(19): 5482-5500.
- [33] GROSSO A, BURGER MG, LUNGER A, et al. It takes two to tango: coupling of angiogenesis and osteogenesis for bone regeneration [J]. Frontiers in Bioengineering and Biotechnology, 2017, 5; 68.
- [34] XU R, YALLOWITZ A, QIN A, et al. Targeting skeletal endothelium to ameliorate bone loss [J]. Nature Medicine, 2018, 24(6): 823 – 833.
- [35] NAKASHIMA K, ZHOU X, KUNKEL G, et al. The novel zinc fingercontaining transcription factor Osterix is required for osteoblast differentiation and bone formation [J]. Cell, 2002, 108(1): 17-29.
- [36] SUN W, LI M, ZHANG Y, et al. Total Flavonoids of Rhizoma Drynariae ameliorates bone formation and mineralization in BMP-Smad signaling pathway induced large tibial defect rats[J]. Phytomedicine, 2021, 138: 111480.
- [37] LI S, ZHOU H, HU C, et al. Total Flavonoids of Rhizoma Drynariae promotes differentiation of osteoblasts and growth of bone graft in induced membrane partly by activating Wnt/β-catenin signaling pathway [J]. in Pharmacology, 2021, 12: 675470.
- [38] HARMLY JM, PASTORORRALES MA, LUTHRIA DL. Flavonoid content of US fruits, vegetables, and nuts[J]. Journal of Agricultural and Food Chemistry, 2009, 57(19): 8705 – 8714.
- [39] PIZARRO C, RODRÍGUEZ-TECEDOR S, PÉREZ-DEL-NOTARIO N, et al. Determination of sterols and fatty acids in vegetable oils by NIR spectrometry with minimal sample preparation [J]. Food Chemistry, 2013, 138(23): 915-922.
- [40] ALAMPRESE C, CASALE M, SINELLI N, et al. Detection of minced beef adulteration with turkey meat by UV-vis, NIR and MIR spectroscopy[J]. LWT-Food Science and Technology, 2013, 53(1): 225 -232.
- [41] MAGALHÃES LM, MACHADO S, SEGUNDO MA, et al. Rapid assessment of bioactive phenolics and methylxanthines in spent coffee grounds by FT-NIR spectroscopy[J]. Talanta, 2016, 147: 460 467.
- [42] LAMMERS MJW, YOUNG E, FENTON D, et al. The prognostic value and pathophysiologic significance of three-dimensional fluid-attenuated inversion recovery (3D-FLAIR) magnetic resonance imaging in idiopathic sudden sensorineural hearing loss; A systematic review and metaanalysis [J]. Clinical Otolaryngology, 2019, 44(6); 1017 – 1025.
- [43] GUO P, LANG S, JIANG M, et al. Alterations of regional homogeneity in children with congenital sensorineural hearing loss; a resting-state fM-RI study[J]. Front Neuroscience, 2021, 15; 810833.