Soil and Water Conservation, Ecological Reconstruction, and Spatial Transformation of Tea Industry in Xinyang City (1952 – 2000)

Tengxiao PAN1, Qing LIU2

1. School of History and Culture, Henan University, Kaifeng 475000, China; 2. Kaifeng Yuzhe Tea Culture Museum, Kaifeng 475000, China

Abstract The water conservancy construction and soil and water conservation projects in New China have reshaped the tea industry landscape in Xinyang City of Henan Province from multiple dimensions. In terms of hydraulic technology, engineering systems represented by the Nanwan Irrigation District redefined the watershed irrigation pattern, while the application of modern agricultural technologies such as sprinkler and electric irrigation accelerated the shift from traditional experience to scientific management in tea garden practices. Ecologically, systematic soil and water management significantly improved growing conditions, making it possible for tea cultivation to break through the traditional geographical limitation of "tea does not grow north of the Huai River." This integrated governance model not only laid the foundation for the northward expansion of Xinyang's tea industry across the Huai River but also facilitated the transition toward scale and intensification through improved irrigation infrastructure and the breeding of cold-resistant tea varieties. Ultimately, driven by the tripartite interactive mechanism of "engineering governance – ecological improvement-spatial expansion," the tea industry in Xinyang achieved a historic leap from traditional production to modern intensive development.

Key words Huai River basin, Xinyang region in Henan Province, Soil and water control, Tea industry

0 Introduction

Xinyang region in Henan Province has a long history of tea planting. In March 1952, the Ministry of Agriculture and the Ministry of Trade jointly instructed the tea production in 1952; "According to the needs of the international and domestic markets, we need to increase the production of black tea as well as green tea" [1]. This policy provides an opportunity for the development of tea producing areas in the Huai River Basin, which is absolutely dominated by green tea.

1 Water control and tea planting: water control project and tea industry construction in Xinyang tea region

The water conservancy projects in the Huai River Basin had a profound impact on tea production. In the 1950s, the central government launched the Huai River Control Project, which integrated comprehensive development such as irrigation and power generation while addressing flood disasters, thereby reshaping the production and lifestyle of the people along the river^[2]. Taking the construction of the Nanwan Reservoir in the Xinyang region as an example, as a key upstream control project, it directly facilitated the reorganization of the population and industry in the tea-growing areas. From 1954 to the spring of 1955, the government organized the relocation of reservoir area migrants to six major tea mountains, including Dongjiahe Mount Cheyun and Mount Jiyun, and established five tea production cooperatives^[2]. The transition of migrants from grain cultivation to specialized tea production completely transformed the traditional production model^[3]. Under the leadership of the local government, measures such as technical

training and housing construction significantly improved the production and living conditions of the migrants^[4]. Within the cooperatives, a mutual assistance mechanism was formed, enabling new migrants to gradually master techniques for tea garden management, harvesting, and processing^[5].

The transformation of the tea industry, characterized by the reorganization of immigrant labor and the adoption of intensive production methods, represented an early application of the Huai River Harnessing Project within the agricultural sector. During the late 1950s, with the implementation of national water conservancy initiatives such as the Nanwan Irrigation Area, the tea industry within the river basin gradually developed an intensive production model supported by irrigation infrastructure. From the 1960s onward, the Huai River Basin established four major irrigation systems, encompassing reservoirs, ponds, rivers, lakes, mechanized wells, and irrigation zones supplied by the Yellow River. These significantly improved water conservancy conditions in the Xinyang region^[6]. Following the completion of the South Bend Irrigation Area, tea farms such as the Ershiwuligang Tea Farm actively developed water conservancy facilities, forming an integrated and complementary irrigation network. In 1970, the tea farm proposed the strategy of "building reservoirs in the mountains, storing floodwater, and irrigating to protect tea plantations," which was later systematized and promoted as a model practice^[7]. By constructing ponds to store water, tea farms ensured the survival of tea seedlings during droughts and facilitated the intercropping of tea and grain crops, achieving positive ecological outcomes [8-9].

However, some irrigation districts constructed during the Great Leap Forward and Cultural Revolution period suffered from low engineering standards and poor quality, resulting in suboptimal performance, with some tea plantations even requiring secondary lift irrigation^[10]. To address this issue, water-saving technolo-

gies such as sprinkler irrigation were gradually promoted in the Xinyang tea region starting from the 1970s – 1980s. In 1981, Xinyang County implemented pilot sprinkler irrigation projects covering 53.33 ha at tea plantations including Qunlong Mountain and Jiyun, achieving remarkable drought resistance results[11]. For instance, in 1982, the sprinkler-irrigated tea plantations at Jiyun Tea Brigade saw an increase of 52.5 kg/ha, while the Red Flag Tea Plantation also achieved significant success^[10]. Given these outcomes, Xinyang County converted the Red Flag Tea Factory into a breeding station for improved tea varieties and allocated special funds for this purpose [11]. In 1987, it was proposed that water conservancy infrastructure in tea regions should be strengthened, including the widespread construction of ponds and the installation of sprinkler irrigation systems^[11]. This experience was quickly extended to neighboring counties and cities; in 1987, Guangshan County mandated the implementation of sprinkler irrigation across 133.33 ha of low-yield tea plantations, equipped with 10 sprinkler irrigation machines. In 1988, the county further purchased 30 additional sprinkler irrigation machines and built lift irrigation stations and laboratories^[12]. For tea plantations where sprinkler irrigation was not feasible, Xinyang had already proposed alternative soil and water conservation measures, such as trenching for water retention, as early as 1982^[13]. The adoption of sprinkler irrigation technology not only revolutionized irrigation methods but also played a pivotal role in transitioning the tea industry toward modernized and high-efficiency practices.

Although the Xinyang tea region receives abundant precipitation, summer and autumn droughts are frequent. Relying solely on natural rainfall often leads to reduced yields. During the 1970s and 1980s, the construction of electric irrigation stations in river and lake irrigation areas significantly enhanced irrigation infrastructure. For example, in 1978, an electric irrigation station was built at the Silkworm Tea Farm in Luoshan County^[14]. Between 1982 and 1984, the Xinyang County Tea Seed Farm established a two-stage electric irrigation system along with supporting ditches, which were further repaired and upgraded in 1985. By 1987, five sprinkler irrigation machines had been added, boosting the level of irrigation mechanization^[15]. Similarly, in 1982, Gushi County carried out an expansion project at the Qianshan River Electric Irrigation Station^[16]. As critical infrastructure, these electric irrigation stations helped tea-growing areas overcome natural constraints, improve drought resilience, increase production, and thereby lay a solid foundation for the development of the "Xinyang Maojian Tea" brand.

In summary, the Huai River Control Project has profoundly reshaped the production pattern of Xinyang tea industry through resettlement, irrigation system construction and water-saving technology promotion, promoted its transformation to water conservancy, intensification and modernization, and highlighted the effectiveness of coordinated development of water conservancy projects and agricultural economy.

2 Soil conservation and enhanced tea production: soil and water conservation projects and ecological transformation of tea plantations in the Xinyang tea region

Soil and water conservation in the Xinyang region is one of a key factor for high tea yields. The area experiences uneven seasonal rainfall, with intense erosive force during the wet season. Tea plants, being shallow-rooted crops, have limited soil retention capacity. Additionally, tea gardens are mostly located in high mountains and hilly areas, making them highly susceptible to erosion^[17]. Prior to the establishment of the People's Republic of China, poor management led to severe soil erosion in tea plantations^[18]. Since 1949, systematic soil and water management was implemented in the Xinyang tea region.

In 1956, Xinyang County systematically introduced three soil and water conservation measures: terracing transformation—converting sloping tea gardens into terraced fields to channel rainwater efficiently; excavation of drainage ditches to divert floodwater around plantations, reducing erosion; use of the "semi-mulching grass method" for vegetative soil stabilization. Steep-slope tea gardens also required stone revetments for slope protection^[19].

By 1959, technical standards were further refined: drainage ditches were to be constructed approximately every 10 m, with a width of 0.33 m and a depth of 0.5 m, aligned along the natural contour of the mountains [19]. This system was later promoted in counties such as Shangcheng and Gushi, which focused respectively on improving ditch systems (1965) and advancing terracing works (1972) [20-21].

In the 1980s, Guangshan County took the lead in implementing classified rehabilitation of old tea plantations: converting "soil-eroding land" (where water, soil, and fertilizer run off) into "soil-conserving land" (where water, soil, and fertilizer are retained); and densifying understocked areas through replanting. Slope gradient determined the treatment: areas with $<5^{\circ}$ were converted into level terraces; those with $5^{\circ}-25^{\circ}$ were transformed into contoured terraced fields; and slopes $>30^{\circ}$ were reinforced with stone-walled terraces while preserving original tea bushes. Planting density standards were raised to 66-86 bushes/ha to achieve the "Five Standardizations."

Xinyang's soil and water conservation emphasized "combining storage with drainage": steep slopes underwent "terracing," while concave and flat tea plantations were trenched with perimeter and cross-ditches (approx. 60 cm deep and wide) for drainage and waterlogging prevention. The optimal period for renovation was July – September, taking advantage of soil weathering and root growth [24].

The drainage system was designed to "irrigate in drought and drain in waterlogging," incorporating four types of ditches: longitudinal ditches (utilizing natural gullies or laid diagonally, with silt traps); transverse ditches (along contours); boundary ditches (along the upper borders and property lines); intercepting ditches (at the lower edge where tea gardens meet farmland) [22]. Follow-

ing reform and opening-up, to develop "nationally renowned premium tea," Xinyang promoted the construction of dwarf, dense, rapid-establishment, and high-yield tea plantations. This required enhanced soil/water conservation and irrigation, high-density planting (e. g., 533 plants/ha), and tree planting around tea gardens [23].

Guangshan County promoted green manure cultivation and intercropping (especially legumes), which conserved soil and water while increasing organic matter^[24-25]. Government investment provided crucial support: in 1986, Shangcheng County received a loan of 130 000 yuan for soil/water conservation, improved variety promotion, and mechanization^[26]; in 1992, Xinyang County invested 250 000 yuan, implementing terracing and densification at a cost of 3 750 yuan/ha^[27].

3 Crossing the boundary and reshaping: the practice of "introducing tea from south to north" in Xinyang region

In 1958, Mao Zedong put forward the instruction of "opening up tea plantations on hillsides", which promoted tea cultivation to the national strategic level, thus transforming the Huai River from a natural geographical barrier to a political symbol that needs to be "conquered". In the traditional Chinese agricultural cognition, the Huai River, as a climate transition zone between the north and the south, is known as the saying that "tea does not cross the Huai River". In the 1950s and 1970s, the movement of "introducing tea from the south to the north" reconstructed this natural boundary through technical means and political mobilization. Based on the initial achievements in soil and water control in Xinyang region, the development goal of "tea trees crossing the Huai River" was clearly put forward in 1960, which not only aimed at breaking through geographical constraints, but also fully reflected the determination and ability to transform nature in the period of socialist construction.

Xinvang is located in the northern edge of tea planting in China, vulnerable to the attack of cold air from the north. The main stream of Huai River passes through its south. The core tea area is located in the northern foot of Tongbai Mountain - Dabie Mountain in the south of Huai River, which belongs to the north south climate transition zone. The extreme low temperature in winter can reach below -15 °C, which often leads to the freezing injury of tea trees. In order to cope with the cold and uneven precipitation. Xinvang has accumulated rich experience in cold and drought resistance of tea plants, which provides an important basis for "Huai River" of tea plants. In 1959, the People's Committee of Xinyang County explicitly instructed: "The climate in our county is cold, and there has been freezing damage over the years. All production brigades should seal roots and earth up to ensure the safe overwintering of tea trees "[28], and require "pruning frozen branches to promote the growth of leaf buds" in spring^[29].

In September 1958, when Mao Zedong visited Shucha

People's Commune, he called for "more tea plantations on the hillside in the future" and formally opened the process of tea moving northward. Traditionally, due to the lack of cold-resistant breeding, irrigation facilities and soil improvement technology, tea trees are difficult to grow in north of Huai River. Studies have shown that tea trees are prone to freeze injury due to water loss of organs during overwintering^[31]. However, the experience of tea planting in the Soviet Union in the 1930s confirmed that tea trees could be cultivated in the frigid zone. In addition, the Huai River control project gradually improved the regional environment, which provided objective conditions for the northward movement. In the 1960s, due to the food difficulties and the loss of agricultural labor force caused by the "Great Leap Forward", the contradiction between supply and demand of tea became increasingly prominent, and many parts of the country carried out the "introduction of tea from south to north". In 1960, Xinyang County put forward the idea of "expanding tea plantations to the north of the Huaihe River to achieve Huai River" of tea plants" [32], but most of the initial attempts failed due to neglect of scientific support. Even the antifreeze of the tea area south of the Huai River is not yet perfect, and the promotion of more to the north is only of political significance^[33].

In the 1970s, Xinyang County revived this initiative and achieved significant progress, building upon long-term accumulated practices in cold and drought resistance. Within two years starting from 1968, the county developed 73.33 ha of new tea gardens, accounting for 27.5% of the total tea cultivation area at the time^[9]. Expansion was also widely promoted in the hilly regions of the central and northern parts of the county. As a model for tea cultivation north of the Huai River, the Hongqi Tea Plantation successfully reclaimed rocky and soil-based uplands since its establishment in 1968. By 1974, it had developed 53.33 ha of tea gardens, producing tea that met the quality standards of "Xinyang Maojian," with plans for further expansion.

In 1962, Xinyang County conducted a national appraisal of improved tea varieties, identifying Guizhou Taicha, Qimen Zhuyezhong, and Fu'an Dabaiha as highly cold-resistant and adaptable, thereby laying the foundation for tea cultivation beyond the Huai River. By 1980, the number of tea-growing communes and brigades in Xinyang had increased substantially, and tea gardens transitioned from scattered plots to concentrated, contiguous development. The Li'an region also successfully bred a cold-resistant variety, "Shuchazao" [31].

Xinyang's "Northward Expansion of Tea Cultivation" combined local experience with technological innovation, forming a unique techno-managerial approach. This endeavor not achieved a geographical breakthrough but also embodied the socialist construction ethos of "humans conquering nature". Supported by river management projects in the Huai River Basin, it facilitated the scaling-up and improved-variety transformation of teaproduction.

4 Conclusions

The development of the tea industry in the Huai River Basin empirically demonstrates the innovative practices of socialist agricultural modernization in an ecological transition zone. Beginning with the Huai River Control Project, water conservancy facilities such as the Nanwan Irrigation District not only effectively managed flooding in the basin but also reshaped agricultural production spaces through systematic soil-water conservation and resettlement programs. From the 1950s through the reform and opening-up period, the continuous expansion of irrigation infrastructure facilitated the transition from collectivized to scaled agricultural production. The adoption of modern technologies such as sprinkler irrigation and electric pumping stations transformed tea garden management from traditional experience-based methods to scientific cultivation.

During the 1970s and 1980s, the promotion of water-saving irrigation technologies alleviated water constraints on tea growth and spurred technological advancement across the entire industry chain. Meanwhile, ongoing innovations in soil and water conservation broke through natural limitations from terracing reforms in 1956 to the remediation of "soil-eroding land" in the 1980s, particularly through the successful breeding of cold-resistant tea varieties, which ultimately enabled the historic breakthrough of tea cultivation north of the Huai River.

From the 1980s to the 1990s, supported by systematic soil-water management projects and large-scale tea planting practices, the Xinyang region established a solid industrial foundation for building the "Xinyang Maojian" brand. This trajectory vividly illustrates the distinctive development pathway of "Controlling Water-Revitalizing Tea – Enriching the People" pioneered by the Chinese Communist Party in the Huai River Basin, successfully transitioning the region from an underdeveloped area into a clustered industrial zone.

References

- [1] Chinese Academy of Social Sciences, Central Archives. Selected Economic Archives of the People's Republic of China (Agriculture Volume) [G]. Beijing; Social Sciences Academic Press, 1991; 628. (in Chinese).
- [2] Xinyang Tea Chronicle Compilation Committee. Xinyang Tea Chronicle [M]. Zhengzhou; Zhongzhou Ancient Books Publishing House, 2019; 75. (in Chinese).
- [3] Proposal on the Establishment of Tea Production Cooperatives [A]. Xin-yang: Pingqiao District Archives, 3-40-4. (in Chinese).
- [4] Directive on Strengthening Leadership in Immigrant Tea Planting and Cooperative Organization [A]. Xinyang: Pingqiao District Archives, 3-72-7. (in Chinese).
- [5] County Committee Approval of the Resettlement Committee's Report on Relocation Work[A]. Xinyang: Pingqiao District Archives, 3-43-9. (in Chinese).
- [6] Summary Report of the Symposium for Directors of Tea Production Cooperatives by the Rural Work Department of the Xinyang County Committee of the CPC[A]. Xinyang: Pingqiao District Archives, 3 79 13. (in Chinese).
- [7] YU WS, WU HT, LIANG JG. Achievements in Harnessing the Huai River in New China and Issues of Sustainable Development [J]. Journal of

- Fuyang Normal University (Social Science Edition), 2016(1): 9. (in Chinese).
- [8] Report on the Development Status and Existing Issues of Hongqi Tea Plantation (Ershiwuli Gang) [A]. Xinyang; Pingqiao District Archives, 16 16 4. (in Chinese).
- [9] SUN XL, CAI C. Renovating and reinforcing water projects: The Nanwan Irrigation Area soars like a giant dragon [J]. Harnessing the Huai River, 1991(5): 19-20. (in Chinese).
- [10] Summary of Tea Production in 1981 and Suggestions for Production in 1982 [A]. Xinyang: Pingqiao District Archives, 16-30-7. (in Chinese).
- [11] Summary of Tea Production Work in 1982 and Suggestions for 1983 [A].
 Xinyang: Pingqiao District Archives, 16-41-3. (in Chinese).
- [12] Suggestions on Developing Tea Production [A]. Xinyang; Pingqiao District Archives, 16-152-1. (in Chinese).
- [13] Request for Instructions on Converting Guangshan County Tea Plantation into a Improved Tea Variety Breeding Station[A]. Xinyang: Guangshan County Archives, 33-1988-16-1. (in Chinese).
- [14] Analysis and Comparison; An Investigation into the Economic Benefits of Tea Production in Two Production Teams [A]. Xinyang; Pingqiao District Archives, 16-42-6. (in Chinese).
- [15] Request for Instructions on Establishing the Luoshan County Silkworm and Tea Plantation[A]. Xinyang: Luoshan County Archives, 24 – 1970 – 5 – 5. (in Chinese).
- [16] Report Requesting Support for the Construction of Tea Seed Gardens at the County Tea Seed Farm[A]. Xinyang: Luoshan County Archives, 16 – 90 – 4. (in Chinese).
- [17] Speech at the Professional Conference on Tea Production [A]. Xinyang; Gushi County Archives, 69-ws-1982-y-bgs-112-9. (in Chinese).
- [18] Summary of Xinyang County's Tea Yield Increase Experience Over Recent Years [A]. Xinyang: Pingqiao District Archives, 10 115 7. (in Chinese).
- [19] Directive on Winter Tea Production Work [A]. Xinyang: Pingqiao District Archives, 35 8 7. (in Chinese).
- [20] Preliminary Plan (Draft) for Tea Production in 1959 [A]. Xinyang; Pingqiao District Archives, 10 – 175 – 3. (in Chinese).
- [21] Notice on Forwarding the "Gushi County Tea Garden Development Plan from 1966 to 1970" [A]. Xinyang; Gushi County Archives, 2-ws. 1965y-350-5. (in Chinese).
- [22] Vigorously Developing Tea Production with Line Struggle as the Key Link [A]. Xinyang: Shangcheng County Archives, 2 - 519 - 3. (in Chinese).
- [23] Several Technical Measures for the Production Management of Existing Tea Gardens [A]. Xinyang: Guangshan County Archives, 33 – 1982 – 14 – 2. (in Chinese).
- [24] Technical Measures for Establishing New Tea Gardens [A]. Xinyang: Guangshan County Archives, 33 1982 14 4. (in Chinese).
- [25] Report on Submitting the Plan for Constructing a National Premium Tea Production Base for Dwarf, Dense, Rapid-Establishment, and High-Yield Xinyang Maojian Tea Gardens [A]. Xinyang: Pingqiao District Archives, 16-153-2. (in Chinese).
- [26] Technical Measures for Establishing New Tea Gardens [A]. Xinyang; Guangshan County Archives, 33-1982-14-4. (in Chinese).
- [27] Request for Development Loans for the Series Development of Tea Production A. Xinyang: Shangcheng County Archives, 2 863 4. (in Chinese).
- [28] Report on the Funds Required for the Transformation of Old Tea Plantations [A]. Xinyang: Pingqiao District Archives, 28 - 150 - 14. (in Chinese).
- [29] Directive of the Xinyang County People's Committee on Current Tea Production Work[A]. Xinyang: Pingqiao District Archives, 10 175 2. (in Chinese).

temperature increased, indicating their higher sensitivity to thermal stress among soil microbial communities. This differential sensitivity directly contributes to the alteration of soil microbial community structure, as reflected in the principal component analysis (Fig. 3).

References

- [1] GARCÍA-GARCÍA A, CUESTA-VALERO FJ, MIRALLES DG, et al. Soil heat extremes can outpace air temperature extremes [J]. Nature Climate Change, 2023, 13(11): 1237 – 1241. (in Chinese).
- [2] MA D, LI X, GUO Y, et al. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(1): 224 229.
- [3] QUINT M, DELKER C, FRANKLIN KA, et al. Molecular and genetic control of plant thermomorphogenesis [J]. Nature Plants, 2016; 15190.
- [4] ZHUANG ST. Effects of elevated atmospheric CO₂ concentration on growth and yield of hybrid rice[D]. Yangzhou: Yangzhou University, 2016. (in Chinese).
- [5] PU LM. Study on grain potential productivity in northeast China under climate and cultivated land change [D]. Changchun: Jilin University, 2020. (in Chinese).
- [6] LIU XH, LYU YS, YANG W, et al. A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice[J]. Plant Biotechnology Journal, 2020, 18(5): 1317 1329.
- [7] ZHANG CY, LI YS, YU ZH, et al. Mechanism of photosynthetic physiology and molecular biology of crop yield as affected by elevated atmospheric CO₂ concentration and temperature; A review [J]. Soils and Crops, 2021, 10(3); 256-265. (in Chinese).
- [8] ZHANG LL, LI W, TIAN YY, et al. The E3 ligase XBAT35 mediates thermoresponsive hypocotyl growth by targeting ELF3 for degradation in Arabidopsis [J]. Journal of Integrative Plant Biology, 2021, 63 (6): 1097-1103.
- [9] ZHAO J, XIE X, JIANG Y, Li J, et al. Effects of simulated warming on soil microbial community diversity and composition across diverse ecosystems[J]]. Science of the Total Environment, 2024, 911: 168793.
- [10] LI H , LIU J , YANG L, et al. Effects of simulated climate warming on soil microbial biomass carbon, nitrogen and phosphorus of alpine forest [J]. Chinese Journal of Applied and Environmental Biology, 2016. (in Chinese).
- [11] ZHANG FU. Rhizosphere Ecology [M]. Beijing: China Agricultural University Press, 2009. (in Chinese).
- [12] LIU XS, WANG YF, SHU YF, et al. Construction and regulation of soil

- structure in root zone based on the theory of rhizobiont [J]. Journal of Plant Nutrition and Fertilizers, 2023, 29 (5): 972 979. (in Chinese).
- [13] SHAHBAZ M, KUZYAKOV Y, SANAULLAH M, et al. Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues; Mechanisms and thresholds [J]. Biology and Fertility of Soils, 2017, 53; 287-301.
- [14] PHILIPPOT L, CHENU C, KAPPLER A, et al. The interplay between microbial communities and soil properties [J]. NNature Reviews Microbiology, 2024, 22(4); 226-239.
- [15] WANG D, ZHANG L, HUANG J, et al. Cardiovascular protective effect of black pepper (*Piper nigrum* L.) and its major bioactive constituent piperine[J] Trends in Food Science and Technology, 2021, 117: 34 – 45.
- [16] LI ZG, ZU C, WANG C, et al. Different responses of rhizosphere and non-rhizosphere soil microbial communities to consecutive Piper nigrum L. monoculture[J]. Scientific Report, 2016, 6: 35825.
- [17] WANG L, HUANG SW, LIU LM, et al. Comparison of three methods for studying microbial diversity of farmland soil[J]. Bulletin of Science and Technology, 2009, 25(5): 588-592. (in Chinese).
- [18] TIAN YN, WANG HQ. Application of Biolog to study of environmental microbial function diversity [J]. Environmental Science & Technology, 2011, 34(3): 50-57. (in Chinese).
- [19] LU RK. Methods for Agrochemical Analysis of Soil[M]. Beijing; China Agricultural Science and Technology Press, 1999. (in Chinese).
- [20] YANG YH, YAO J, HUA XM. Effect of pesticide pollution against functional microbial diversity in soil[J]. Journal of Microbiology, 2000, 20(2): 23-25. (in Chinese).
- [21] ZHANG ZM, XU YL, HAN XZ, et al. Effects of continuous fertilization on microbial functional diversity in black soil under cropland [J]. Chinese Journal of Ecology, 2012, 31(3): 647-651. (in Chinese).
- [22] LI H, LIU J, YANG L, et al. Effects of simulated climate warming on soil microbial biomass carbon, nitrogen and phosphorus of alpine forest [J]. Chinese Journal of Applied and Environmental Biology, 2016. (in Chinese).
- [23] WU H, CUI H, FU C, et al. Unveiling the crucial role of soil microorganisms in carbon cycling: A review[J]. Science of the Total Environment, 2024, 909: 168627.
- [24] ZHAO J, XIE X, JIANG Y, et al. Effects of simulated warming on soil microbial community diversity and composition across diverse ecosystems [J]. Science of the Total Environment, 2024, 911; 168793.
- [25] LI J, ZHAO BQ, LI XY, et al. Changes of soil microbial properties affected by different long-term fertilization regimes [J]. Chinese Journal of Plant Ecology, 2008, 32(4): 891 899. (in Chinese).

(From page 17)

- [30] Preliminary Draft Plan for Tea Production in 1959 by the Xinyang County People's Committee [A]. Xinyang: Pingqiao District Archives, 10 – 175 – 3. (in Chinese).
- [31] Lu'an Municipal CPPCC, Lu'an Agricultural Committee. Lu'an Tea [M]. Hefei: Huangshan Publishing House, 2014; 2. (in Chinese).
- [32] Suggestions on Winter Management of Tea Gardens [A]. Xinyang: Guangshan County Archives, 33-1984-14-4. (in Chinese).
- [33] Summary Report of the Second Tea and Silkworm Production Work Conference in the 60 Years of Xinyang[A]. Xinyang: Pingqiao District Archives, 3-269-12. (in Chinese).
- [34] Summary Report on the Tea Production Conference in Xinyang County

- [A]. Xinyang: Pingqiao District Archives, 37 23 16. (in Chinese).
- [35] Request Report on Converting the Hongqi Tea Plantation in Xinyang County into a State-Owned Plantation or a Unit with Fixed Subsidies [A]. Xinyang: Pingqiao District Archives, 28 - 34 - 8. (in Chinese).
- [36] 1962 Production Work Summary of the Xinyang Tea Experiment Station [A]. Xinyang: Pingqiao District Archives, 35 - 156 - 5. (in Chinese).
- [37] Report by the Xinyang County Supply and Marketing Cooperative on the Status and Suggestions for Tea Production [A]. Xinyang: Pingqiao District Archives, 36-153-1. (in Chinese).