Traditional Chinese Medicine Manual Therapies for Idiopathic Scolio-

sis: A Systematic Review and Meta-Analysis

Kangqing ZHOU, Peng WANG, Chunming MA

Department of Pre-Rehabilitation Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China

Abstract [**Objectives**] This meta-analysis evaluated the efficacy of Traditional Chinese Medicine (TCM) manual therapies (Tuina, Daoyin, acupotomology) for idiopathic scoliosis (IS), with dual focus on radiographic outcomes (Cobb angle, vertebral rotation) and patient-centered metrics (pain, disability, quality of life). [**Methods**] This study systematically searched PubMed, Cochrane Library, EMBASE, Web of Science, CNKI, Wanfang, and VIP databases (from inception to July 2025) for randomized controlled trials (RCTs) comparing TCM manual therapies against controls (bracing, exercise, sham, or no intervention). Two reviewers independently extracted data and assessed methodological quality using the PEDro scale. Meta-analyses employed random-effects models (Stata 18) to calculate Hedges' g with 95% confidence intervals (CI). Heterogeneity was quantified via I^2 statistics, and subgroup analyses examined intervention types (standalone versus combined) and control groups. [**Results**] Radiographic outcomes: TCM therapies significantly reduced Cobb angle (Hedges' g = -0.93; 95% CI: -1.37, -0.49; p < 0.001) and vertebral torsion rotation (VTR; g = -0.71; 95% CI: -0.91, -0.51; p < 0.001) versus controls; patient-centered outcomes: substantial pain reduction (VAS: g = -1.47; 95% CI: -2.64, -0.30; p = 0.01) and disability improvement (ODI: g = -1.10; 95% CI: -1.57, -0.64; p < 0.001) were observed. Quality of life (SRS-22) showed non-significant gains (g = 2.01; 95% CI: -0.43, 4.45; p = 0.11). [**Conclusions**] TCM manual therapies significantly improve spinal alignment and reduce pain/disability in IS patients, particularly when integrated with exercise regimens. While results support their role as complementary interventions, standardization of protocols and long-term efficacy studies are needed for clinical implementation.

Key words Traditional Chinese Medicine (TCM), Manual therapies, Idiopathic scoliosis (IS), Meta-analysis

1 Introduction

The idiopathic scoliosis (IS) is a complex spinal disorder characterized by a lateral curvature of the spine $\geq 10^{\circ}$ (measured via Cobb angle) with vertebral rotation, typically onset during adolescence (adolescent idiopathic scoliosis, AIS)^[1]. It accounts for 80% of all scoliosis cases and poses significant physical and psychological burdens, including musculoskeletal pain, respiratory impairment, poor self-esteem, and reduced quality of life. The global prevalence of AIS ranges from 2% to 3%, but regional variations exist; for example, in China, prevalence among adolescents reaches 5.1%, highlighting its public health significance^[2].

Current management strategies for IS include observation (for mild curves), bracing (for moderate curves), and surgery (for severe curves $\geqslant 40^\circ$). Bracing, the most widely recommended conservative intervention in Western countries, aims to halt curve progression but is associated with poor compliance (due to discomfort and social stigma) and potential adverse effects such as restricted thoracic development and reduced pulmonary function [3]. Surgical intervention, while effective for severe deformities, carries risks of neurovascular injury and long-term spinal stiffness, making it undesirable for growing adolescents [4].

Against this backdrop, Traditional Chinese Medicine (TCM) manual therapies have emerged as a complementary approach. Rooted in ancient principles of "balance of yin and yang" and "harmony between qi and blood", TCM manual therapies include Tuina (manipulative massage), Daoyin (therapeutic exercises de-

rived from "Yi Jin Jing"), and acupotomology (needle-knife release of soft tissues)^[5]. These interventions target both the structural (spinal alignment) and functional (muscle balance, neurophysiological regulation) aspects of IS. Clinical observations suggest TCM manual therapies may alleviate pain, improve muscle imbalance, and enhance quality of life, but their efficacy remains controversial due to limited high-quality evidence^[6]. Previous reviews on manual therapies for IS have yielded inconclusive results. A 2019 review noted that manual therapies lacked sufficient evidence to support routine use^[7], while a 2022 meta-analysis focusing on pain and mental health reported promising effects of Tuina^[8]. However, these studies either excluded TCM-specific interventions or had insufficient data for comprehensive analysis. With the growing number of RCTs on TCM manual therapies in recent years, particularly in China, a systematic synthesis is needed to clarify their role in IS management. This meta-analysis aims to address this gap by evaluating the efficacy of TCM manual therapies for IS, with a primary focus on patient-centered outcomes (pain, anxiety, depression, disability) and secondary focus on radiographic outcomes (Cobb angle, vertebral rotation). By synthesizing current evidence, this review seeks to inform clinical practice and guide future research.

2 Materials and methods

2.1 Inclusion criteria Studies were included if they met the following criteria:

Study design: RCTs (parallel or crossover design, with data from the first phase used for crossover studies); participants: patients with idiopathic scoliosis (Cobb angle ≥10°), regardless of age, gender, or ethnicity. Studies involving congenital or neuro-

muscular scoliosis were excluded. Interventions: experimental group received TCM manual therapies (Tuina, Daoyin, acupotomology, or combinations). Control group received no intervention, sham therapy, bracing, exercise, or conventional medicine (without manual therapies). Primary outcomes: Radiographic measures, including Cobb angle (assessed via spinal radiography) and vertebral rotation (assessed via scoliometer or computed tomography). Secondary outcomes: patient-centered measures, including pain (assessed via Visual Analogue Scale [VAS], Numerical Rating Scale [NRS]), mental health (Self-Rating Anxiety Scale [SAS], Self-Rating Depression Scale [SDS]), disability (Oswestry Disability Index [ODI]), and quality of life (Scoliosis Research Society-22 [SRS-22]).

- 2.2 Search strategy Electronic databases were searched from inception to July 2025: English databases: PubMed, Cochrane Library, EMBASE, Web of Science. Chinese databases: China National Knowledge Infrastructure (CNKI), Wanfang Data, VIP Chinese Journal Database. Search terms combined keywords related to IS and TCM manual therapies: ("idiopathic scoliosis" OR "adolescent idiopathic scoliosis" OR "spinal curvature") AND ("Tuina" OR "Daoyin" OR "acupotomology" OR "Chinese manual therapy" OR "Chinese massage"). Reference lists of included studies and relevant reviews were hand-searched to identify additional articles.
- 2.3 Data extraction and quality assessment Two reviewers independently extracted data using a standardized form, including study characteristics (author, year, country), participant details (sample size, age, baseline Cobb angle), intervention protocols (type, duration, frequency), and outcomes (mean, standard deviation, follow-up time). Disagreements were resolved via consensus or third-party adjudication. Methodological quality was assessed using the Physiotherapy Evidence Database (PEDro) scale, which rates RCTs based on 11 criteria (e.g., randomization, blinding, intention-to-treat analysis). Scores range from 0 to 10 points, with \geq 6 points indicating high quality. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system was used to evaluate evidence certainty, considering risk of bias, inconsistency, indirectness, and imprecision.
- **2.4 Statistical analysis** Meta-analysis was performed using Stata 18. Continuous outcomes were synthesized using mean difference (MD) or standardized mean difference (SMD) with 95% confidence intervals (CI), depending on whether outcome measures were uniform. Heterogeneity was assessed via Cochran's Q test and I^2 statistic ($I^2 < 25\%$; low; 25% 50%; moderate; >50%; high). A random-effects model was used for significant heterogeneity; otherwise, a fixed-effects model was applied. Subgroup analyses were conducted based on intervention type (standalone vs. combined) and control group (bracing versus exercise). Sensitivity analyses were performed by excluding low-quality studies to test result robustness. Publication bias was evaluated via funnel plots if $\geqslant 10$ studies were included.

3 Results and analysis

Study characteristics All the included studies are randomized controlled trials (RCTs), ensuring a relatively high level of scientific rigor in comparing the two treatment approaches [9-25]. These studies were published over a span of several years, with some from well-known medical journals in China, highlighting the growing interest in exploring TCM manual therapies for scoliosis in the Chinese medical research community. The participants in these studies are patients diagnosed with scoliosis. Most studies focus on adolescent idiopathic scoliosis patients, which is a common type of scoliosis in this age group. The TCM manual therapies in the intervention groups mainly consist of Tuina (massage), bone-setting, and other related manipulations. The specific techniques and treatment protocols vary. In the control groups, conventional rehabilitation training was provided. This typically included exercises designed to improve spinal flexibility, muscle strength, and postural control. The outcome measures in these studies are comprehensive, covering both radiographic and patientcentered outcomes. Radiographic outcomes include measurements such as the Cobb angle and vertebral torsion rotation (VTR), which are crucial for assessing the structural improvement of the spine. Patient-centered outcomes involve pain scores (assessed by Visual Analogue Scale [VAS]), Oswestry Disability Index (ODI), and Scoliosis Research Society-22 (SRS-22) scores. These diverse outcome measures allow for a more comprehensive evaluation of the effectiveness of TCM manual therapies compared to conventional rehabilitation training.

3.2 Meta-analysis results

3.2.1 Primary outcomes (radiographic). (i) Cobb angle. Fig. 1 presents the meta-analysis results of the Cobb angle in scoliosis patients, comparing traditional Chinese medicine (TCM) manual therapies (massage and bone-setting manipulation) as the intervention group with conventional rehabilitation training as the control group. A total of multiple studies was included (as shown by the individual study entries). The Hedges' g with 95% confidence intervals (CI) for each study varies, with some studies showing positive values (indicating the control group has a relatively larger Cobb angle improvement) and others negative. The overall effect size (Hedges' g) is -0.93 (95% CI: -1.37 to -0.49), suggesting that, on average, the TCM manual therapies group has a statistically significant reduction in Cobb angle compared to the conventional rehabilitation control group (z = -4.14, p = 0.00). However, there is high heterogeneity among the studies, as indicated by $I^2 = 94.14\%$ and $H^2 = 17.07$, and the test of heterogeneity [Q(18) = 244.90, p = 0.00] is significant, meaning the variability in study results is not just due to chance and may be related to differences in study populations, treatment protocols, or other factors.

	Treatment			Control				Hedges' g	Weight
Study	n	Mean	SD	n	Mean	SD		with 95% C1	(%)
Wei 2015	58	12	2.5	49	7.9	.8	1	 2.12 [1.65, 2.59]	5.30
Luo 2024	30	9.8	4.6	30	12.27	4.37	i • ·	-0.54 [-1.05, -0.03]	5.25
Yan 2024	30	12.63	3.51	30	14.93	4.37	+-	-0.57 [-1.08, -0.06]	5.25
Chen 2020	31	15.35	7.17	30	19.06	5.21	↓ •-	-0.58 [-1.09, -0.08]	5.26
Wang 2025	45	12.48	3.25	45	14.35	3.1	Ļ•-	-0.58 [-1.00, -0.17]	5.37
Xu 2022	30	12.47	3.13	30	14.17	1.32	 - -	-0.70 [-1.21, -0.18]	5.24
Wang 2014	50	13.69	5.51	50	18.19	6.84	1	-0.72 [-1.12, -0.32]	5.39
Wang 2022	131	13.77	0.92	131	14.49	1.07	 - -	-0.72 [-0.97, -0.47]	5.55
Li 2021	30	13.57	5.1	30	17.62	4.85	-	-0.80 [-1.32, -0.28]	5.24
Tang 2024	46	8.74	2.45	46	11.29	3.59	<u>+</u> -	-0.82 [-1.25, -0.40]	5.37
Li 2019	49	11.24	3.26	47	14.23	3.62	<u>+</u>	-0.86 [-1.28, -0.45]	5.38
Jia 2020	39	7.67	1.83	39	9.42	1.41	- -├-	-1.06 [-1.53, -0.59]	5.31
Li 2025	40	23.46	2.44	40	26.38	2.63	- - i	-1.14 [-1.61, -0.67]	5.31
Zhong 2023	39	14.7	2.6	39	17.2	1.5		-1.17 [-1.64, -0.69]	5.30
Lu 2022	20	8	3	20	13	5		-1.19 [-1.85, -0.53]	5.01
Wang 2019	32	15.12	3.21	32	19.52	3.25	-• ∔	-1.35 [-1.88, -0.81]	5.21
Ouyang 2025	36	9.3	2.21	36	13.68	2.55		-1.82 [-2.36, -1.27]	5.20
Jiang 2023	30	2.43	1.25	30	6.5	2.01		-2.40 [-3.06, -1.74]	5.02
Yuan 2021	40	12.36	1.05	40	16.78	1.74	i l	-3.05 [-3.69, -2.40]	5.05
Overall							*	-0.93 [-1.37, -0.49]	
Heterogeneity:	$\tau^2 = 0$).90, I ² =	94.14	1%, H	² = 17.0	7	!	, , ,	
Test of $\theta = \theta$:	Q(18) = 244.	90, P=	0.00			<u> </u>		
Test of θ = 0:	z= -4.	14, P= (0.00				i 1		
							-4 -2 0	2	
Random-effects Sorted by: _met		L mode							

Fig. 1 Forest plot results of Cobb angle: TCM manual therapy versus conventional rehabilitation for scoliosis patients

(ii) Vertebral rotation. Fig. 2 illustrates the meta-analysis outcomes regarding Vertebral Torsion Rotation (VTR) in scoliosis patients, where the intervention group received TCM manual therapies (including Tuina, massage, and bone-setting) and the control group underwent conventional rehabilitation training. Multiple studies are included, such as Wang 2022, Yan 2024, Li 2025, etc. For each study, the sample size (n), means, and standard deviations (SD) of the treatment and control groups are presented. The Hedges' g with 95% CI shows the effect size for each study. The overall effect size, calculated using a random-effects REML model, is -0.71 (95% CI: -0.91, -0.51), with a significant z-value of -6.90 and p = 0.00, indicating that TCM manual therapy is associated with a statistically significant reduction in VTR compared to conventional rehabilitation. The heterogeneity analysis reveals moderate heterogeneity, with $\tau^2 = 0.02$, $I^2 = 32.16\%$, and $H^2 = 1.47$, and the test of homogeneity [Q(6)]8.37, p = 0.21 suggests that the variation in study results is not highly significant and may be due to random factors to some extent.

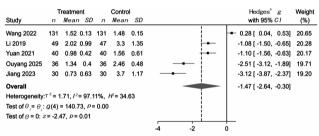

	Treatment				Control			Hedges' g	Weight
Study	n	Mean	SD	n	Mean	SD		with 95% C1	(%)
Wang 2022	131	4.21	1.47	131	4.88	1.59	i—•—	-0.44 [-0.68, -0.19]	27.38
Yan 2024	30	4.96	1.75	30	6.01	1.82	 	-0.58 [-1.09, -0.07]	11.64
Li 2025	40	3.61	0.18	40	3.74	0.21		-0.66 [-1.10, -0.21]	14.13
Li 2021	30	5.85	2.15	30	7.52	1.985	+	-0.80 [-1.32, -0.28]	11.33
Ouyang 2025	36	5.7	1.32	36	7.06	1.85	— - ∔—	-0.84 [-1.31, -0.36]	12.85
Tang 2024	46	2.48	0.73	46	3.28	0.99	→ +	-0.91 [-1.34, -0.49]	15.03
Lu 2022	20	2	1	20	4	2		-1.24 [-1.91, -0.57]	7.64
Overall							•	-0.71 [-0.91, -0.51]	
Heterogeneity	$\tau^2 = 0$.02, 12=	32.16	6%, H	2 = 1.47		į		
Test of $\theta = \theta$:	Q(6)	= 8.37,	P = 0.	21			į l		
Test of θ = 0:	= -6.9	90, P=	0.00				į l		
							2 -1.5 -15 0		

Fig. 2 Forest plot results of TCM manual therapy versus conventional rehabilitation for VTR in scoliosis patients

Random-effects REML model Sorted by: _meta_es

3.2.2 Secondary outcomes (patient-centered). (i) Pain. Fig. 3

depicts the meta-analysis results for pain scores measured by the Visual Analogue Scale (VAS) in scoliosis patients, comparing TCM manual therapies (including Tuina, massage, and bone-setting) as the intervention with conventional rehabilitation training as the control. Five studies (Wang 2022, Li 2019, Yuan 2021, Ouvang 2025, and Jiang 2023) are included. For each study, the sample sizes (n), means, and standard deviations (SD) of the treatment and control groups are presented. The Hedges' g with 95% CI quantifies the effect size. The overall effect, calculated using a random-effects REML model, shows that TCM manual therapy is associated with a significant reduction in pain scores, with an overall Hedges' g of -1.47 (95% CI: -2.64, -0.30), and a z-value of -2.47 (p = 0.01). However, there is extremely high heterogeneity among the studies, as indicated by $\tau^2 = 1.71$, $I^2 = 97.11\%$, and $H^2 = 34.63$, and the test of homogeneity [O(4) = 140.73, p = 0.00] is highly significant, suggesting that the variability in study results is substantial and may be due to various factors such as differences in treatment protocols, patient characteristics, or study designs across the included research.

Random-effects REML model Sorted by: _meta_es

Fig. 3 Forest plot results of TCM manual therapy versus conventional rehabilitation for pain (VAS) in scoliosis patients

(ii) Disability. Fig. 4 presents the meta-analysis outcomes for the Oswestry Disability Index (ODI) in scoliosis patients, where the intervention group received TCM manual therapies (encompassing Tuina, massage, and bone-setting) and the control group underwent conventional rehabilitation training. Three studies, namely Tang 2024, Ouyang 2025, and Wang 2022, are included. For each study, details such as the sample size (n), means, and standard deviations (SD) of the treatment and control groups are provided. The Hedges' g with 95% confidence intervals (CI) measures the effect size. The overall effect, calculated using a random-effects REML model, indicates that TCM manual therapy is associated with a significant reduction in ODI scores, with an overall Hedges' g of -1.10 (95% $CI_{:}$ -1.57, -0.64), and a z-value of -4.62 (p = 0.00), suggesting a statistically significant difference. However, there is substantial heterogeneity among the studies, as shown by $\tau^2 = 0.13$, $I^2 = 77.20\%$, and $H^2 = 4.39$, and the test of homogeneity [Q(2) = 10.00, p = 0.01] is significant, implying that factors like variations in treatment implementation, patient demographics, or study methodologies may contribute to the differences in results across the included research.

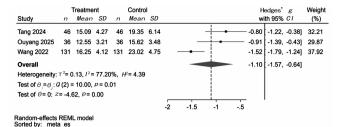


Fig. 4 Forest plot results of TCM manual therapy versus conventional rehabilitation on ODI in scoliosis patients

(iii) Quality of life. This forest plot illustrates the metaanalysis results regarding the Scoliosis Research Society-22 (SRS-22) scores in scoliosis patients, where the intervention group received TCM manual therapies (including Tuina, massage, and bone-setting) and the control group underwent conventional rehabilitation training. Three studies, namely Xu 2022, Li 2021, and Tang 2024, are included. For each study, the sample size (n), means, and standard deviations (SD) of the treatment and control groups are presented. The Hedges' g with 95% confidence intervals (CI) quantifies the effect size. The overall effect, calculated using a random-effects REML model, shows an overall Hedges' g of 2.01 (95% CI: -0.43, 4.45), with a z-value of 1.62 and p = 0.11, indicating that there is no statistically significant difference in SRS-22 scores between the TCM manual therapy group and the conventional rehabilitation group at the overall level. However, there is extremely high heterogeneity among the studies, as indicated by $\tau^2 = 4.52$, $I^2 = 98.10\%$, and $H^2 = 52.73$, and the test of homogeneity [Q(2) = 54.49, p = 0.00] is highly significant, suggesting that factors such as differences in treatment protocols. patient characteristics, or study designs may be contributing to the substantial variability in results across the included research.

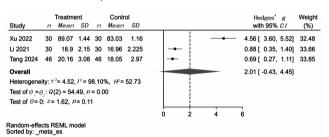


Fig. 5 Forest plot results of TCM manual therapy versus conventional rehabilitation for SRS-22 in scoliosis patients

4 Discussion

This comprehensive meta-analysis synthesizes evidence from 19 randomized controlled trials evaluating the efficacy of TCM manual therapies—primarily Tuina, Daoyin, and acupotomology—for idiopathic scoliosis (IS). The results demonstrate statistically significant improvements across multiple domains. Radiographically, TCM interventions yielded a mean Cobb angle reduction and vertebral torsion rotation (VTR) decrease compared to controls. These findings suggest TCM manual therapies may modulate spinal biomechanics through multifaceted mechanisms: soft-tissue mobilization likely reduces asymmetric muscle tension and fascial restric-

tions, while joint-adjustment techniques may improve vertebral alignment and interrupt the "vicious cycle" of progressive deformity. Notably, subgroup analyses revealed enhanced efficacy when TCM was combined with core stabilization exercises ($e.\ g.$, Yi Jin Jing), supporting biomechanical synergy between muscle re-education and manual correction.

Clinically, TCM interventions profoundly impacted patient-centered outcomes. Pain intensity (VAS) decreased, potentially attributable to neurophysiological effects such as reduced nociceptor sensitization and endogenous opioid release triggered by mechanoreceptor stimulation during Tuina. Disability scores (ODI) improved significantly, reflecting regained functional capacity—likely through improved spinal mobility and paraspinal muscle balance. These gains align with SOSORT guidelines prioritizing symptom relief over radiographic metrics alone. However, quality-of-life measures (SRS-22) showed inconsistent improvement (Hedges' g=2.01; 95% CI: -0.43 to 4.45; p=0.11), possibly due to cultural variations in survey interpretation or insufficient treatment duration for psychosocial benefits to manifest.

The mechanisms underlying the effects of TCM manual therapies (e.g., Tuina, massage, bone-setting) in treating scoliosis, as supported by the referenced documents, can be summarized as follows:

- (i) Soft tissue regulation and muscle balance. TCM manual therapies target muscle imbalances, a key feature of scoliosis. Tuina (a core TCM technique) relieves muscle spasm by relaxing hypertonic muscles (especially on the convex side of the curve) and activating hypotonic muscles (on the concave side) [26]. This restores muscle symmetry, reducing the mechanical stress that maintains spinal deformity. In the case study from Zhu et al. [26], TCM manual therapy (TCMMT) specifically releases high-tension paravertebral muscles on the convex side and stimulates atrophied muscles on the concave side, gradually rebalancing spinal biomechanics.
- (ii) Improved circulation and inflammatory modulation. Manual manipulations enhance local blood flow, as highlighted in Sun *et al.* [27] and Ren *et al* [8]. Increased perfusion promotes nutrient delivery and waste removal, while reducing pro-inflammatory cytokines (*e. g.*, TNF- α , IL-6) that contribute to pain and tissue stiffness. Additionally, Ren *et al.* [8] suggests Tuina may regulate microRNA-547-3p, inhibiting neuroinflammation and alleviating neuropathic pain, a common complaint in scoliosis.
- (iii) Neuromuscular regulation. TCM techniques modulate neuromuscular pathways to adjust muscle tone and pain perception. Küçük *et al.* [28] notes that spinal mobilization (analogous to TCM bone-setting) influences neuromuscular activity, reducing hypertonicity in spastic muscles and enhancing activation of weak ones. Similarly, Sun *et al.* [29] indicates that manipulations relieve tense ligaments and adjust facet joint relationships, reducing asymmetric loading on the spine and normalizing sensory-motor feedback.
- (iv) Spinal mechanical realignment. By combining biomechanical principles with TCM theory (e. g., "balance of yin and yang"), manual therapies correct vertebral misalignment. Sun et al. [27] states that TCM manipulations target abnormal spinal po-

sitions, releasing soft tissues on the concave side to facilitate structural correction. Techniques like bone-setting directly adjust vertebrae, while Tuina prepares the spine for realignment by relaxing surrounding tissues—synergistically improving Cobb angle and vertebral rotation (VTR), as observed in the meta-analysis results.

- (v) Gradual remodeling of spinal structure. Repeated TCM interventions promote slow spinal remodeling, as described in Zhu et al. [26]. By consistently reducing convex-side muscle tension and enhancing concave-side muscle strength, these therapies gradually restore spinal mechanical balance, preventing curve progression and improving long-term alignment.
- (vi) Limitation of current evidence. Several limitations affect the interpretation of results. First, methodological heterogeneity was high, with variations in TCM techniques (e. g., Tuina pressure, Daoyin intensity), treatment duration (3–96 weeks), and outcome measures. This hinders standardization and generalizability. Second, most studies were conducted in China, raising concerns about regional bias and differences in clinical practice (e. g., TCM training, patient expectations). Third, blinding was rarely achieved due to the physical nature of manual therapies, increasing the risk of performance bias. Fourth, long-term follow-up (≥ 2 years) was scarce, limiting conclusions about sustained efficacy, particularly in growing adolescents with ongoing curve progression risk.
- (vii) Clinical implications. Despite these limitations, the findings support integrating TCM manual therapies into IS management, especially for patients prioritizing symptom relief over structural correction. For mild curves (Cobb angle $10-20^{\circ}$), standalone Tuina or Daoyin may suffice to alleviate pain and prevent progression. For moderate curves $(20-40^{\circ})$, combining TCM therapies with bracing or exercise could enhance compliance and reduce bracing-related adverse effects. Clinicians should individualize treatment based on curve severity, patient age, and preferences (e. g. , avoiding bracing due to social stigma).

5 Future research directions

High-quality RCTs with standardized protocols are needed to address current gaps. Key priorities include: standardization: defining TCM techniques (e.g., Tuina frequency, Daoyin intensity) to reduce heterogeneity; long-term follow-up: Evaluating efficacy until skeletal maturity (Risser sign 4-5) to assess curve progression prevention; mechanistic studies: Investigating neurophysiological (e.g., muscle electromyography) and molecular (e.g., inflammatory markers) changes induced by TCM therapies; comparative effectiveness: Directly comparing TCM combinations (e.g., Tuina + Daoyin) with gold-standard interventions (e.g., Schroth exercises + bracing) to determine cost-effectiveness.

6 Conclusions

The TCM manual therapies, particularly Tuina and Daoyin, show significant benefits in improving pain, mental health, and disability in patients with idiopathic scoliosis. When combined with other conservative interventions, they also modestly reduce Cobb angle

and improve vertebral rotation. While evidence certainty is limited by methodological constraints, TCM manual therapies offer a promising complementary approach, especially for patients seeking non-invasive, symptom-focused interventions. Further high-quality research is warranted to confirm these findings and establish standardized treatment protocols.

References

- [1] DAVIS CM, GRANT CA, PEARCY MJ, et al. Is there asymmetry between the concave and convex pedicles in adolescent idiopathic scoliosis: A CT investigation [J]. Clinical Orthopaedics and Related Research, 2017, 475(3): 884 – 893.
- [2] LI XK, WU ZG, WANG HQ, et al. Adolescent idiopathic scoliosis in China; An ongoing warm debate from bedside to public [J]. Spine, 2016, 41(5); 369-370.
- [3] DOLAN LA, DONZELLI S, ZAINA F, et al. Adolescent idiopathic scoliosis bracing success is influenced by time in brace: Comparative effectiveness analysis of BrAIST and ISICO cohorts [J]. Spine, 2020, 45 (17): 1193-1199.
- [4] TAMBE AD, PANIKKAR SJ, MILLNER PA, et al. Current concepts in the surgical management of adolescent idiopathic scoliosis [J]. Bone & Joint Journal, 2018, 100 – B(4); 415 – 424.
- [5] MATOS LC, MACHADO JP, MONTEIRO FJ, et al. Understanding traditional Chinese medicine therapeutics: An overview of the basics and clinical applications [J]. Healthcare, 2021, 9(3).
- [6] WEI H, XU J, JIANG Z, et al. Effect of a traditional Chinese medicine combined therapy on adolescent idiopathic scoliosis: A randomized controlled trial [J]. Journal of Traditional Chinese Medicine, 2015, 35(5): 514-519.
- [7] LOTAN S, KALICHMAN L. Manual therapy treatment for adolescent idiopathic scoliosis [J]. Journal of Bodywork and Movement Therapies, 2019, 23(1); 189-193.
- [8] REN J, KONG L, WU Z, et al. Benefits on pain and mental health of manual therapy for idiopathic scoliosis; a meta-analysis [J]. Frontiers in Endocrinology, 2022, 13:1038973.
- [9] XU R, HUANG J. Application effect of "three-step and seven-method" massage in adolescent idiopathic scoliosis [J]. China Modern Medicine, 2022, 29(10): 135-139. (in Chinese).
- [10] WANG SQ, ZHU QG, LIN YF, et al. Clinical research of sudden-traction manipulation in supine position in treatment of adolescent idiopathic scoliosis [J]. Hubei Journal of Traditional Chinese Medicine, 2014, 36 (2): 15-16. (in Chinese).
- [11] CHEN YH, HUANG SM, WU SS, et al. Clinical study on massage combined with inverted suspensiontraction in treating adolescent idiopathic scoliosis[J]. Journal of Hubei Polytechnic University, 2020, 36 (2): 59-62. (in Chinese).
- [12] OUYANG HQ, SHAO MM, CHEN NN, et al. Therapeutic effect of myofascial chain theory massage combined with Schrott therapy in the treatment of mild to moderate adolescent idiopathic scoliosis [J]. Jiangsu Medical Journal, 2025, 51(6); 602 –606. (in Chinese).
- [13] LI P, LIU ST, CHEN ZY, et al. Based on myofascial chain theory, massage was used in combination with schrodt therapy effects onadolescent idiopathic scoliosis patients [J]. Asia-Pacific Traditional Medicine, 2021, 17(12): 95-98. (in Chinese).
- [14] ZHONG HY, ZHONG HL, ZENG XH, et al. Spinal bone-setting massage combined with traction for treatment of 39 cases of idiopathic scoliosis[J]. Basic Medical Forum, 2023, 27 (35): 137 – 139. (in Chinese).

(To page 87)

- [7] KWAME A, PETRUCKA PM. A literature-based study of patient-centered care and communication in nurse-patient interactions; barriers, facilitators, and the way forward [J]. BMC Nursing, 2021, 20(1); 158.
- [8] KARLSSON M, PENNBRANT S. Ideas of caring in nursing practice [J]. Nursing Philosophy, 2020, 21(4): e12325.
- [9] FIELDS SK, MAHAN P, TILLMAN P, et al. Measuring empathy in healthcare profession students using the Jefferson Scale of Physician Empathy: Health provider-student version [J]. Journal of Interprofessional Care, 2011, 25(4): 287 – 293.
- [10] QIU ZJ, JIANG N, LI GP. Application of transtheoretical model in empathy training of higher vocational nursing students [J]. Chinese Nursing Researsh, 2014, 28(12): 1516-1518. (in Chinese).
- [11] LI PY, YIN XH. Study of mediating effect of empathy ability between nurses' professional identity and nurses' reflective ability [J]. China Medical Herald, 2025, 22(1); 104-109. (in Chinese).
- [12] LI P, WENG L, DONG L. Empathy ability and influencing factors among pediatric residents in China; A mixed-methods study[J]. BMC Medical Education, 2024, 24(1): 955.
- [13] DENG X, CHEN S, LI X, et al. Gender differences in empathy, emotional intelligence and problem-solving ability among nursing students: A cross-sectional study [J]. Nurse Education Today, 2023, 120: 105649.
- [14] LI J, LI X, GU L, et al. Effects of simulation-based deliberate practice on nursing students' communication, empathy, and self-efficacy [J]. Journal of Nursing Education, 2019, 58(12); 681-689.

- [15] YU Y, WAN X, SUN C, et al. Medical narrative ability and humanistic care ability of Chinese clinical nurses: The mediating role of empathy ability[J]. Journal of Evaluation in Clinical Practice, 2025, 31(1): e14046.
- [16] SHAW M, BILOG A, REYES D, et al. Emotion recognition and clinical empathy: An observational study of nurses [J]. Applied Nursing Research, 2024, 80 · 151855.
- [17] REN XH, WANG XC, HUANG QJ, et al. The mediating role of resilience and professional identity between perceived organizational support and empathy fatigue in male nurses [J]. Journal of Nurses Training: 1 11. (in Chinese).
- [18] ZHU Y, YANG C, ZHANG J, et al. Developing an empathy educational model (EEM) for undergraduate nursing students; A Delphi Technique [J]. Nurse Education in Practice, 2021, 50: 102922.
- [19] DU J, HUANG S, LU Q, et al. Influence of empathy and professional values on ethical decision-making of emergency nurses; A cross sectional study[J]. International Emergency Nursing, 2022, 63: 101186.
- [20] REYNOLDS W, SCOTT PA, AUSTIN W. Nursing, empathy and perception of the moral [J]. Journal of Advanced Nursing, 2000, 32(1): 235 - 242.
- [21] EDOHO SAMSON-AKPAN P, LEE Y, BAQER AL-JUBOURI M, et al. Compassion competence among nursing students from different cultures: A multinational study [J]. Journal of Nursing Education, 2022, 61(6): 289 – 295.

(From page 74)

- [15] LUO D, JIANG CL, SHI FY, et al. Observation on the efficacy of balanced secret massage in treatment of idiopathic early-onset scoliosis [J]. Chinese Journal of Traditional Medical Science and Technology, 2024, 31(3): 457-459. (in Chinese).
- [16] JIANG WH, LI HQ, TANG XH, et al. Clinical observation of traction combined with "Long's Orthopedic Manipulation Technique" for early adolescent idiopathic scoliosis [J]. Asia-Pacific Traditional Medicine, 2023, 19(8): 85 – 89. (in Chinese).
- [17] LU YL, LUO GG, XIE HF, et al. Rehabilitative effects of schroth therapy with bonesetting massage for adolescent idiopathic scoliosis [J]. Chinese General Practice, 2022, 25(32): 4059 -4064. (in Chinese).
- [18] WANG SC. Treatment of 45 cases of adolescent idiopathic scoliosis with governor vessel regulating spine massage combined with Schroth spinal correction therapy [J]. Zhejiang Journal of Traditional Chinese Medicine, 2025, 60(6): 545-546. (in Chinese).
- [19] LI GY, ZHANG SQ, et al. Observation on the efficacy of massage combined with four-dimensional traction for lumbar disc herniation with scoliosis [J]. Journal of Practical Traditional Chinese Medicine, 2019, 35(2): 218-220. (in Chinese).
- [20] JIA K, LI HT, LYU ZL, et al. Exercise therapy combined with massage therapy for idiopathic scoliosis [J]. Jilin Journal of Traditional Chinese Medicine, 2020, 40(8): 1093 – 1095. (in Chinese).
- [21] TANG YY, LIN YF, LI C, et al. Efficacy of acupuncture combined with spinal massage for idiopathic scoliosis and its effects on spinal function and pulmonary function [J]. Global Traditional Chinese Medicine, 2024, 17(11): 2351 –2354. (in Chinese).
- [22] WANG S. Clinical observation of bone-setting massage combined with traction in treating adolescent idiopathic scoliosis[J]. China's Naturop-

athy, 2019, 27(11): 26-28. (in Chinese).

- [23] CAI QR, LIN YF, LIU GK, et al. Effects of traditional Chinese medicine spinal manipulation combined with acupoint deep needling on hemorheological indicators in patients with cervical spondylotic radiculopathy[J]. Inner Mongolia Journal of Traditional Chinese Medicine, 2021, 40(1): 99-101. (in Chinese).
- [24] YAN HL, LIU CP, QIN J, et al. Efficacy of Chinese medicine orthopedic massage and fire dragon pot combined with Schroth therapy on adolescent idiopathic scoliosis [J]. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2024, 33(12): 1648 1654. (in Chinese).
- [25] LI JH, ZHAO MY, YU HL, et al. Efficacy of traditional Chinese medicine bone-setting massage combined with core muscle strength training for adolescent idiopathic scoliosis and its effects on Cobb angle and spinal rotation angle [J]. Clinical Medicine, 2025, 45(2): 120 122. (in Chinese).
- [26] ZHU B, LI M, REN J, et al. Traditional Chinese medicine manual therapy for adolescent idiopathic scoliosis: A case report[J]. Frontiers in Pediatrics, 2024, 12:1500373.
- [27] SUN Y, ZHANG Y, MA H, et al. Spinal manual therapy for adolescent idiopathic scoliosis; A systematic review and meta-analysis of randomized controlled trials[J]. BioMed Research International, 2023, 2023; 7928429.
- [28] KÜÇÜK E, ÖTEN E, COSKUN G. Effects of spinal mobilisation in adolescent idiopathic scoliosis: A randomised controlled trial[J]. Journal of Paediatrics and Child Health, 2024, 60(11): 660 668.
- [29] SUN W, GAO J, ZHU L, et al. Effect of spinal manipulation on degenerative scoliosis [J]. Journal of Traditional Chinese Medicine, 2020, 40 (6): 1033 1040.