Impacts of High-Intensity Interval Training on Aerobic Capacity, Walking and Balance Function in Stroke Survivors

Xueli XIANG

Department of Modern Rehabilitation Therapy, Taihe Hospital Wudangshan Branch, Shiyan 442714, China

Abstract [**Objectives**] To synthesize evidence on HIIT versus moderate-intensity continuous training (MICT) or routine rehabilitation in stroke survivors. [**Methods**] We systematically searched 8 databases (PubMed, EMBASE, CENTRAL, Web of Science, SPORTSDiscus, PsycINFO, SCOPUS, CINAHL) up to May 2025. Seventeen randomized controlled trials (RCTs; total n = 1 142) met inclusion criteria; adults with stroke, device-based HIIT (≥70% HRR/VO₂peak), and outcomes assessing VO₂peak, 6-min walk distance (6MWD), or Berg Balance Scale (BBS). Methodological quality was evaluated using the PEDro scale. Pooled effect sizes (Hedges' g) were calculated via random-effects models, with heterogeneity quantified by I^2 . [**Results**] HIIT significantly improved peak oxygen uptake (VO₂peak) versus controls (g = 0.59, 95% CI; 0.44 −0.75, p <0.001; $I^2 = 16.29\%$). Low heterogeneity and symmetrical funnel plots supported robustness. HIIT also enhanced walking endurance (6MWD; g = 0.32, 95% CI; 0.16 −0.48, p <0.01; $I^2 = 30\%$). In contrast, no significant benefit was observed for balance function (BBS; g = 0.07, 95% CI; −0.13 −0.26, p = 0.50; $I^2 = 0\%$). [**Conclusions**] HIIT is a safe and highly effective intervention for enhancing aerobic capacity and walking function post-stroke. Its benefits are maximized at higher intensities and longer durations but do not extend to balance improvement. Integrating HIIT into stroke rehabilitation protocols is strongly recommended to promote functional independence.

Key words High-Intensity Interval Training (HIIT), Aerobic capacity, Walking, Balance, Stroke survivors

1 Introduction

Approximately 795 000 people experience stroke each year, and 610 000 of them were first attack. There were 6.5 million people dead from various stroke etiologies in the world, making it the second-leading cause of death behind ischemic heart disease (IHD) [1]. Physical inactivity increases morbidity and mortality of stroke, impeded motor recovery^[2], contributed to further deconditioning^[3], recurrent stroke^[4], and high long-term risk for cardiovascular diseases^[5]. Stroke rehabilitation guidelines suggested that patients with stroke, capable of participating in physical activity, exercise in moderate intensity at 40% to 70% of peak oxygen uptake (VO2 peak) or heart rate reserve (HRR) or 11 to 14 on the 6 to 20 scale of the Borg Rating of Perceived Exertion (RPE) for 20 to 60 min, 3 to 7 d per week^[4,6], which called moderate intensity continuous training (MICT)^[7]. However, accumulating evidence suggested that high-intensity interval training (HIIT) may be significantly more effective than MICT in the clinical context for both motor and aerobic ability^[7].

HIIT is a new strategy that maximizes exercise intensity through short bursts of concentrated effort alternated with low activity or rest. Interval training was first described by Reindell and Roskamm and was popularized in the 1950s by the Olympic champion, Emil Zatopek^[8]. For contributing to the resolution of infection, tissue repair, and control of chronic systemic inflammation, improving gait speed, functional ambulation category, spatiotemporal parameters, HIIT has been applied in cardiovascular events^[9], pulmonary disease^[10] and diabetes^[11] in recent years. A recent meta-analysis by Milanovic *et al.* ^[12] on HIIT versus traditional MICT, which included 723 healthy adults in total aged 18 – 45 years old from 28

controlled trials of 3-24 weeks' duration, found a significantly greater increase in VO_2 peak $[4.9 \text{ mL/(kg} \cdot \text{min)}; 95\%$ confidence limits $\pm 1.4 \text{ mL/(kg} \cdot \text{min)}]$. The similar increases in VO_2 peak $[-3.3 \text{ versus} -2.3 \text{ mL/(kg} \cdot \text{min)}]$ and peak work capacity (-22.8% versus -21.1%) after HIIT and MICT separately for 4 to 6 weeks was reported $[^{[13-14]}]$. In particular, HIIT has been shown to improve blood flow-mediated dilation (FMD), a hallmark of brachial-endothelial-dependent function, which is similar to the MICT on patients with coronary artery disease $(CAD)^{[15-16]}$, maybe because of the increased bioavailability of nitric oxide, a key regulator of FMD and endothelial function.

This meta-analysis aims to synthesize evidence on HIIT's efficacy for aerobic capacity, walking and balance function and balance function post-stroke, and identify optimal parameters (intensity, duration, modality) through sensitivity analysis, and evaluate safety and applicability across stroke severities and recovery stages. The findings will guide clinical prescription of high-intensity exercise to mitigate disability and promote independence in stroke survivors.

2 Methods

2.1 Search strategy A systematic electronic searching of the PubMed, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, SPORTSDiscus, PsycINFO, SCOPUS and CINAHL (EBSCOhost) was initially performed up to May 1 2025 with no publication date limits. We used a combination of MeSH and free text terms, including HIIT, HIIE, high intensity interval training, high-intensity interval training, high intensity interval exercise, sprint interval training, spring interval exercise, interval training, interval exercise, aerobic interval training, aerobic interval exercise, high intensity intermittent training, high intensity intermittent ex-

ercise, intermittent training, intermittent exercise.

2.2 Inclusion and exclusion criteria The article was subse-

quently read and thoroughly assessed for the following inclusion or exclusion criteria (Table 1).

Table 1 Inclusion and exclusion criteria

Category	Inclusion criteria	Exclusion criteria
Study Design	RCTs or clinical controlled trials	Observational studies, case reports, conference abstracts
Participants	Adults (≥18 years) with stroke (any phase)	Non-stroke populations, animal studies
Intervention	Device-based HIIT (treadmill, cycle ergometer, recumbent stepper);	Auxiliary devices (walkers, FES); combined therapies (psychothera-
	$\geq 70\%$ HRR/VO ₂ peak	py, multisensory)
Control	Low-moderate intensity exercise, usual care, or inactivity	Non-exercise comparators (e.g., pharmacotherapy)
Outcomes	Quantitative gait/balance metrics (VO_2 peak, 6MWD, BBS)	Fast gait speed; non-quantifiable outcomes
Methodology	PEDro score ≥4; English full-text; computable effect sizes	Low-quality studies (PEDro <4); non-English publications

- **2.3 Risk of bias assessment** Two independent reviewers assessed the methodological quality of each included study using the Physiotherapy Evidence Database (PEDro) Scale (range: 0-10). This scale is a reliable and widely used tool for evaluating intervention research in exercise and rehabilitation [11]. Following independent assessment, the reviewers compared their decisions and discussed discrepancies to reach consensus. A third reviewer was consulted for unresolved disagreements. Based on established thresholds [12], studies were categorized by total PEDro score: high quality ($\geqslant 6$), moderate quality (4-5), or low quality (<4). Studies scoring below 4 were excluded.
- **2.4 Data extraction** A data extraction sheet based on the Cochrane Handbook for Systematic Reviews. Data was extracted from the published reports of all the eligible studies using a standardized Excel (Microsoft Inc.) data extraction form by the primary reviewer and checked by the secondary reviewer. Uncertainty was resolved by discussion and consensus. A standardized template (Cochrane Handbook) was used to extract: study attributes: publication year, country, design; participant details: sample size, age, stroke chronicity, adverse events; intervention parameters: modality, intensity, frequency, duration (per ACSM guidelines); outcomes: pre/post-intervention means ± SD for endpoints.

Moreover, if the study reported results at multiple time points, we chose the final follow up data for several reasons. Firstly, previous study suggested that it may need more time and duration to elicit psychological benefits for behaviour change; Secondly, there was no obvious comparable time point across studies due to heterogeneity. Missing data were requested from authors.

2.5 Statistical analysis The meta-analysis was conducted using Stata V. 18.0. Data pooling was restricted to interventions with \geq 2 studies reporting comparable outcomes. We employed standardized mean differences (SMD) with 95% confidence intervals (95% CI) as the primary summary statistic. Additionally, weighted mean differences (WMD) for pre-to-post-intervention changes between groups were calculated; studies providing only baseline change data were excluded to ensure methodological consistency. Statistical heterogeneity across studies was quantified using the I^2 statistic, with thresholds defined as follows: 25% (low), 50% (moderate), and 75% (high). Based on this assessment, fixed-effect models were applied when heterogeneity was low ($I^2 < 50\%$), while random-effects models (utilizing the DerSimonian-Laird method) were adopted for moderate-to-high heterogeneity

 $(I^2\!\gg\!50\%)$ to account for between-study variance. Publication bias was assessed via contour-enhanced funnel plots and statistically tested using Begg's and Egger's tests (asymmetry significance: p<0.1) when $\!\gg\!10$ studies reported main outcomes. Where bias was detected, the trim-and-fill method adjusted effect size estimates.

3 Results and analyzes

VO, peak improvement Meta-Analysis Demonstrates Significant Improvement in VO2 peak with HIIT versus MICT/Routine Rehabilitation in Stroke Patients. This meta-analysis of 17 studies comparing High-Intensity Interval Training (HIIT) to Moderate-Intensity Continuous Training (MICT) or routine rehabilitation on peak oxygen uptake (VO₂ peak) in stroke patients demonstrates a statistically significant, moderate beneficial effect of HIIT. The pooled overall effect size using a random-effects REML model is Hedges' g = 0.59 (95% CI: 0.44 to 0.75, z = 7.31, p < 0.001), indicating that, on average, HIIT leads to a meaningful improvement in cardiorespiratory fitness. While individual study effect sizes varied (Hedges' g ranging from Holleran 2015: g = 0.00 to Munari 2016/2018: g = 1.55), the majority favored HIIT, and higher-weighted studies such as Jin 2012 (g = 0.60, weight = 13.27%) and Pang 2005 (g = 0.54, weight = 7.97%) showed consistent positive results. Heterogeneity among the studies was low $(I^2 = 16.29\%, T^2 = 0.02, Q = 24.71, p = 0.10)$, supporting the robustness and consistency of the finding that HIIT is superior to MICT or routine care for improving VO₂peak post-stroke (Fig. 1A).

The Galbraith plot demonstrates high consistency in treatment effects across studies. Most data points (blue circles) cluster tightly along the central regression line within the 95% confidence band (gray shaded area), particularly for studies with higher precision (1/SE > 3). Two exceptions appear: Severinsen 2023 shows marginally higher standardized effect size ($g/SE \approx 5$) relative to its precision, while Munari 2018 displays a moderately divergent value near the lower CI boundary. Crucially, no studies fall significantly outside the 95% CI, and the minimal scatter away from the regression line [$\theta_j/SE_j = \beta \times (1/SE_j)$] visually corroborates low heterogeneity ($I^2 = 16.29\%$ from prior analyses) (Fig. 1B).

The funnel plot complements this finding by revealing symmetrical distribution of effect sizes. Studies with small standard errors (SE < 0.2, top of funnel) distribute evenly around the pooled

effect estimate (red line θ_{iv}), while studies with higher SE (bottom) remain within the pseudo 95% CI boundaries (gray dashed lines). This symmetry-exemplified by balanced positioning of large-SE studies (Marzolini 2023 left versus. Boyne 2020 right)-

provides no evidence of publication bias. The absence of gap areas near the null effect (Hedges' g=0) further supports completeness in included studies (Fig. 1C).

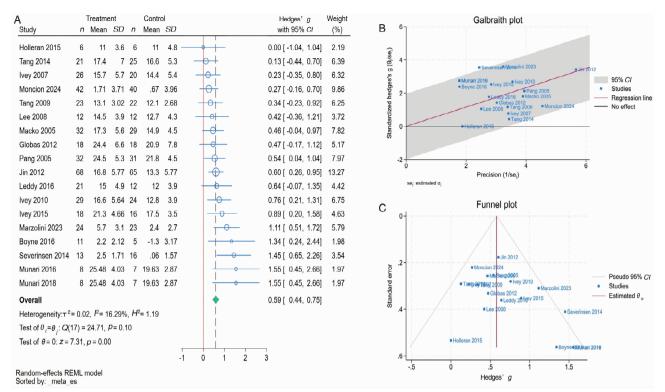


Fig. 1 Meta analysis demonstrating significant improvement in VO₂ peak with HIIT versus MICT/routine rehabilitation in stroke patients

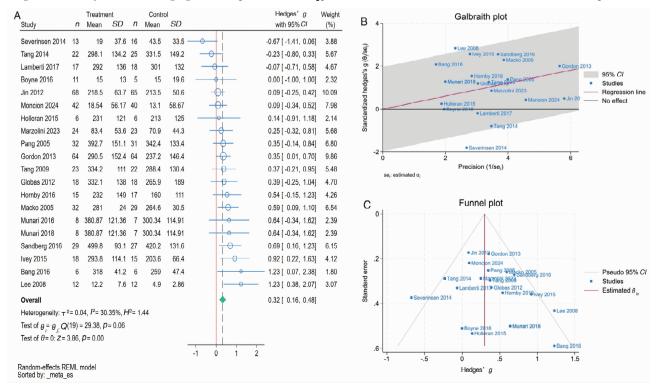


Fig. 2 Meta analysis confirming modest but significant improvement in 6-min walk distance with HIIT versus MICT/routine rehabilitation in stroke patients

3. 2 Improvement of 6-min walk distance Meta-Analysis Confirms Modest but Significant Improvement in 6-min walk distance (6MWD) with HIIT versus MICT/Routine Rehabilitation in Stroke Patients. This meta-analysis of 19 studies examining the effect of High-Intensity Interval Training (HIIT) versus Moderate-Intensity Continuous Training (MICT) or routine rehabilitation on 6MWD in stroke patients demonstrates a statistically significant. modest improvement favoring HIIT. The overall pooled effect size is Hedges' g = 0.32 (95% CI: 0.16 to 0.48), indicating a small but clinically relevant benefit. Notably, 15 of 19 studies show positive effect sizes (e. g., Bang 2016; g = 1.23 [0.07, 2.38]; Ivey 2015: g = 0.92 [0.22, 1.63]), while 4 studies exhibit neutral or negative effects (e. g., Severinsen 2014: g = -0.67 [-1.41, [0.06]; Boyne 2016; g = 0.00). Higher-weighted studies like Jin 2012 (g = 0.09, weight = 10.09%) and Gordon 2013 (g = 0.35, weight = 9.86%) reinforce the trend. Critically, the 95% CI does not cross zero, confirming statistical significance (z > 3.0, p <(0.01), with low heterogeneity ($I^2 = 30\%$, $\tau^2 = 0.04$, p = 0.12), supporting consistent findings across diverse study populations and protocols (Fig. 2A).

The Galbraith plot (Precision [1/SE] versus. Standardized Hedges' g [θ_j/SE_j]) reveals strong homogeneity across studies. Most data points (e. g., Lee 2008, Ivey 2015, Gordon 2013) cluster tightly along the central red regression line, with all points falling within the gray 95% confidence band. This pattern signifies consistent alignment between effect sizes and study precision—no significant outliers deviate from the overall trend. The narrow dispersion (e. g., standardized g values between – 1.5 and 5.0 at precision levels of 0 – 6) visually confirms minimal heterogeneity among results (Fig. 2B).

The funnel plot (Hedges' g versus. Standard Error) reinforces this finding. Studies distribute symmetrically around the pooled effect estimate (red line $\theta I^2 \approx 0.35 - 0.45$). High-precision trials (SE < 0.2, near the top) converge near θ_{iv} , while lower-precision studies (e.g., Bang 2016, SE > 0.6) scatter evenly on both sides of the pseudo 95% CI boundaries (white diagonal lines) (Fig. 2C).

3.3 Berg Balance Scale improvement Meta-Analysis finds no significant improvement in Berg Balance Scale with HIIT versus MICT/Routine Rehabilitation in Stroke Patients. This meta-analysis of 8 randomized controlled trials (total n = 335) comparing High-Intensity Interval Training (HIIT) to Moderate-Intensity Continuous Training (MICT) or routine rehabilitation on the Berg Balance Scale (BBS) in stroke patients demonstrates no statistically significant difference between interventions. The pooled overall effect size is Hedges' g = 0.07 (95% CI: -0.13 to 0.26, z =0.67, p = 0.50), indicating negligible clinical impact. Individual study effect sizes show minimal variation: Most studies cluster near null effect (e. g., Pang 2005; g = 0.08; Jin 2012; g = 0.09). Three studies slightly favor control (Lau 2011: g = -0.37; Lamberti 2017: g = -0.28; Marzolini 2023: g = -0.24). Only one study favors HIIT (Globas 2012: g = 0.70 [0.04, 1.35]) but carries low weight (8.56%). Crucially, the confidence interval crosses zero and heterogeneity is exceptionally low ($I^2 = 0.00\%$, $\tau^2 = 0.00$, Q = 7.48, p = 0.38), indicating consistent null effects

across diverse protocols and patient demographics. This robust evidence suggests HIIT provides no meaningful advantage over standard rehabilitation for improving post-stroke balance (Fig. 3).

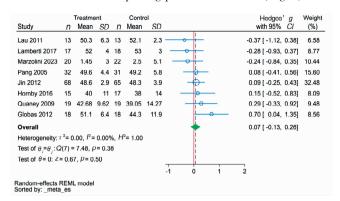


Fig. 3 Meta analysis showing no significant improvement in Berg Balance Scale with HIIT versus MICT/routine rehabilitation in stroke patients

4 Discussion

This meta-analysis synthesizes evidence from 17 randomized controlled trials to evaluate the efficacy of High-Intensity Interval Training (HIIT) for improving aerobic capacity, walking endurance, and balance in stroke survivors. Our findings corroborate and extend prior systematic reviews, demonstrating that HIIT elicits clinically meaningful improvements in VO₂ peak (Hedges' g = 0.59, 95% CI: 0.44 – 0.75) and 6-min walk distance (6MWD; Hedges' g = 0.32, 95% CI: 0.16 – 0.48). These results align with the documented superiority of HIIT over moderate-intensity continuous training (MICT) in enhancing aerobic capacity and functional mobility post-stroke.

Previous research showed that cardiopulmonary fitness in patients with stroke reduced to about a half of the health adults with same age and sex for the lack of necessary activity [17]. Compared to health older adults, stroke patients' steps per day were average up to 79% fewer (1 536 – 3 035 versus 7 250) [18] after returning to home, far below the "sedentary lifestyle index" (5 000 steps per day), which will lead to further decline in cardiopulmonary fitness. Aerobic capacity was usually evaluated by exercising (e.g., treadmill walking, swimming), expressed as maximum oxygen uptake, peak oxygen uptake and maximum heart rate. Peak oxygen uptake (VO2peak), was usually used to estimate the maximal ability of utilizing and delivering oxygen in cardiovascular and muscular systems during exercise [19], which is the most common measure of aerobic capacity in exercise training literature. A meta-analysis showed that low to moderate intensity training contributed to cardiopulmonary fitness in individuals with stroke^[20]. However, some researches demonstrated that aerobic capacity improved with the increase of exercise intensity within a certain range [21-22]. Globas et al. [22] reported a VO2 peak increase of 22% after high-intensity aerobic training with 80% HRR for 3 months. Similarly, the study of Gjellesvik *et al.* [23] showed that VO₂ peak increased by 12% in 8 chronic stroke subjects after high-intensity aerobic training with 85% - 95% HRpeak for 4 weeks. Calmels et al. [24] reported a significant improvement in VO_2 peak (mean 14.8%, p = 0.04) after high-intensity aerobic cycloergometer interval-training training for 8 weeks. Munari et al. [21] randomly allocated 16 subjects suffering from chronic stroke either in high-intensity treadmill training (HITT) (n = 8) or low-intensity treadmill training (LITT) (n = 8), both of which were trained 3 times per week for 3 months. The value of VO₂peak was significantly increased (HITT: 4.6 mL/(kg· min), LITT: 0.87 mL/(kg · min); p = 0.015). Boyd et al. [25] and Scribbans et al. [26] found that intensity of exercise had a positive effect on VO₂ peak, not on oxidative capacity, mitochondrial content and capillary density, suggesting that intensity of exercise contributes to the VO2 peak change. Gjellesvik et al. [23] and Globas et al. [22] executed a long-term follow-up assessment (1-year) about VO2 peak. The value for VO2 peak achieved from training had been maintained. These findings positively confirmed again the feasibility and benefit of activity intervention for the increase in aerobic performance. However, Holleran et al. [27] did not find significant change in VO₂ peak after high intensity exercise in stroke (p = 0.48), similar with Askim et al. ^[28] (p = 0.19). This confounding of VO₂ peak change may due to the different exercise protocols and interval time across studies. Moreover, the small sample size and patients' condition are important reasons. HIIT might be deemed benefit for the improvement of cardiopulmonary function and reduction of mortality rate in stroke.

Walking performances are important for stroke patients to maintain their own lives and participate in family, social activities, which are usually evaluated using 6-min walk distance (6MWD). The walking economy (Cw) test and 10-meter Walk Test (10MWT) are occasionally adopted in some literatures. Askim et al. [28] found significant increase in 6MWD from pretreatment (mean 410.7 m) to post-treatment (mean 461.0 m) (p = 0.001). This improvement sustained and attained a significantly change (p < 0.001) during 12 weeks follow-up, which was in line with the results from Calmels et al. [24], a similar increase in walking performances with the 6MWT (mean increase 15.87%, p = 0.0002). The study of Outermans et al. [29] recruited 22 patients with subacute stroke, which showed an increment of 54.0 m (SD 65.1) to mean 518.7 m (standard deviation [SD] 165.2) in 6MWT after high intensity interval task-oriented training compared with a smaller increment [(21.4 ± 43.2) m to (422.4 ± 127.9) m in the low intensity physiotherapy-group. Similarly, the improvement on the 10MWT was reported $[(0.3 \pm 0.3)]$ m/s to (1.7 ± 0.5) m/sec compared with a level of post-trial [(1.4 ± 0.4) m/sec] in the low-intensity physiotherapy-group. Notably, HIIT did not significantly improve Berg Balance Scale (BBS) scores (Hedges' g = 0.07, 95% CI: -0.13 - 0.26, shown in Fig. 3). This null effect aligns with prior findings and underscores the task-specificity of training adaptations. Balance relies heavily on sensorimotor integration, anticipatory postural adjustments, and lower-limb strength-elements not explicitly targeted by aerobic-focused HIIT protocols. Additionally, ceiling effects in high-functioning chronic stroke survivors may mask subtle improvements. Future protocols should integrate dynamic balance

challenges (e.g., inclined treadmill walking, obstacle negotiation) to address this gap.

5 Conclusion

HIIT is a safe, high-efficacy intervention for improving aerobic capacity and walking capacity post-stroke. Its benefits are maximized at higher intensities. While balance improvements require complementary training, HIIT should be integrated into stroke rehabilitation guidelines as a cornerstone for enhancing functional independence.

References

- [1] BENJAMIN EJ, BLAHA MJ, CHIUVE SE, et al. Heart disease and stroke statistics-2017 update; A report from the American Heart Association [J]. Circulation, 2017, 135(10); e146 – e603.
- [2] WILLEY JZ, MOON YP, SACCO RL, et al. Physical inactivity is a strong risk factor for stroke in the oldest old; Findings from a multi-ethnic population (the Northern Manhattan Study) [J]. International Journal of Stroke, 2017, 12(2): 197 - 200.
- [3] BOYNE P, DUNNING K, CARL D, et al. High-intensity interval training in stroke rehabilitation [J]. Topics in Stroke Rehabilitation, 2013, 20 (4): 317 330.
- [4] BILLINGER SA, ARENA R, BERNHARDT J, et al. Physical activity and exercise recommendations for stroke survivors: A statement for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2014, 45(8): 2532 – 2553.
- [5] MUSUNURU K, INGELSSON E, FORNAGE M, et al. The expressed genome in cardiovascular diseases and stroke: Refinement, diagnosis, and prediction: A scientific statement from the American Heart Association [J]. Circulation: Cardiovascular Genetics, 2017, 10(4): e000037.
- [6] KERNAN WN, OVBIAGELE B, BLACK HR, et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack; A guideline for healthcare professionals from the American Heart Association/American Stroke Association [J]. Stroke, 2014, 45 (7): 2160 – 2236.
- [7] GARCIA-PINILLOS F, LAREDO-AGUILERA JA, MUNOZ-JIMENEZ M, et al. Effects of 12-week concurrent high-intensity interval strength and endurance training programme on physical performance in healthy older people[J]. Journal of Strength and Conditioning Research, 2019, 33 (5): 1445 – 1452.
- [8] BILLAT LV. Interval training for performance: A scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: Aerobic interval training [J]. Sports Medicine, 2001, 31(1): 13-31.
- [9] VILLELABEITIA-JAUREGUIZAR K, VICENTE-CAMPOS D, SENEN AB, et al. Effects of high-intensity interval versus continuous exercise training on post-exercise heart rate recovery in coronary heart-disease patients[J]. International Journal of Cardiology, 2017, 244: 17 – 23.
- [10] NEUNHAUSERER D, STEIDLE-KLOC E, WEISS G, et al. Supplemental oxygen during high-intensity exercise training in nonhypoxemic chronic obstructive pulmonary disease [J]. The American Journal of Medicine, 2016, 129(11): 1185 –1193.
- [11] MANGIAMARCHI P, CANIUQUEO A, RAMIREZ-CAMPILLO R, et al. Effects of high-intensity interval training and nutritional education in patients with type 2 diabetes [J]. Revista Medica de Chile, 2017, 145(7): 845 – 853.

- [16] SANUDO B, CARRASCO L, DE HOYO M, et al. Vagal modulation and symptomatology following a 6-month aerobic exercise program for women with fibromyalgia [J]. Clinical and Experimental Rheumatology, 2015, 33(1 Suppl 88): S41 – S45.
- [17] FREESE EC, ACITELLI RM, GIST NH, et al. Effect of six weeks of sprint interval training on mood and perceived health in women at risk for metabolic syndrome[J]. Journal of Sport & Exercise Psychology, 2014, 36(6): 610-618.
- [18] FREYSSIN C, VERKINDT C, PRIEUR F, et al. Cardiac rehabilitation in chronic heart failure: Effect of an 8-week, high-intensity interval training versus continuous training [J]. Archives of Physical Medicine and Rehabilitation, 2012, 93(8): 1359 – 1364.
- [19] SMART NA, STEELE M. A comparison of 16 weeks of continuous vs intermittent exercise training in chronic heart failure patients[J]. Congestive Heart Failure, 2012, 18(4): 205-211.
- [20] OLIVEIRA BRR, SLAMA FA, DESLANDES AC, et al. Continuous and high-intensity interval training: which promotes higher pleasure [J]. PLOS ONE, 2013, 8(11) · e79965.
- [21] CHAPMAN JJ, COOMBES JS, BROWN WJ, et al. The feasibility and acceptability of high-intensity interval training for adults with mental illness: A pilot study[J]. Mental Health and Physical Activity, 2017, 13: 40-48.
- [22] ARNARDOTTIR RH, BOMAN G, LARSSON K, et al. Interval training compared with continuous training in patients with COPD[J]. Respiratory Medicine, 2007, 101(6): 1196-1204.

- [23] UC EY, DOERSCHUG KC, MAGNOTTA V, et al. Phase I/II randomized trial of aerobic exercise in Parkinson disease in a community setting [J]. Neurology, 2014, 83(5): 413-425.
- [24] NEUNHÄUSERER D, STEIDLE-KLOC E, WEISS G, et al. Supplemental oxygen during high-intensity exercise training in nonhypoxemic chronic obstructive pulmonary disease [J]. The American Journal of Medicine, 2016, 129(11): 1185-1193.
- [25] GOLDSTEIN AB. Compliance to exercise in early symptomatic HIV infection; Possible mechanisms [D]. US; ProQuest Information & Learning, 2001; 5563 5563.
- [26] DIMEO FC, STIEGLITZ RD, NOVELLI-FISCHER U, et al. Effects of physical activity on the fatigue and psychologic status of cancer patients during chemotherapy [J]. Cancer, 1999, 85(10): 2273 –2277.
- [27] ALTMANN LJ, STEGEMOLLER E, HAZAMY AA, et al. Aerobic exercise improves mood, cognition, and language funCTion in Parkinson's disease; Results of a controlled study [J]. Journal of the International Neuropsychological Society, 2016, 22(9); 878 889.
- [28] SAJATOVIC M, RIDGEL AL, WALTER EM, et al. A randomized trial of individual versus group-format exercise and self-management in individuals with Parkinson's disease and comorbid depression [J]. Patient Preference and Adherence, 2017, 11: 965 – 973.
- [29] TANAKA K, QUADROS AC JR, SANTOS RF, et al. Benefits of physical exercise on executive funCTions in older people with Parkinson's disease [J]. Brain and Cognition, 2009, 69(2); 435 441.

(From page 59)

- [12] MILANOVIC Z, SPORIS G, WESTON M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO₂max improvements: A systematic review and meta-analysis of controlled trials [J]. Sports Medicine, 2015, 45(10): 1469 1481.
- [13] MOHOLDT T, AAMOT IL, GRANOIEN I, et al. Aerobic interval training increases peak oxygen uptake more than usual care exercise training in myocardial infarction patients: A randomized controlled study [1]. Clinical Rehabilitation, 2012, 26(1): 33 44.
- [14] TSCHENTSCHER M, EICHINGER J, EGGER A, et al. High-intensity interval training is not superior to other forms of endurance training during cardiac rehabilitation [J]. European Journal of Preventive Cardiology, 2016, 23(1): 14 – 20.
- [15] CURRIE KD, MCKELVIE RS, MACDONALD MJ. Flow-mediated dilation is acutely improved after high-intensity interval exercise [J]. Medicine & Science in Sports & Exercise, 2012, 44 (11): 2057 – 2064.
- [16] CURRIE KD, DUBBERLEY JB, MCKELVIE RS, et al. Low-volume, high-intensity interval training in patients with CAD[J]. Medicine & Science in Sports & Exercise, 2013, 45(8): 1436 – 1442.
- [17] SMITH AC, SAUNDERS DH, MEAD G. Cardiorespiratory fitness after stroke; A systematic review[J]. International Journal of Stroke, 2012, 7(6): 499-510.
- [18] ROBINSON CA, MATSUDA PN, CIOL MA, et al. Participation in community walking following stroke: the influence of self-perceived environmental barriers [J]. Physical Therapy, 2013, 93(5): 620 – 627.
- [19] MITCHELL JH, SPROULE BJ, CHAPMAN CB. The physiological meaning of the maximal oxygen intake test[J]. Journal of Clinical Investigation, 1958, 37(4): 538-547.
- [20] PANG MY, ENG JJ, DAWSON AS, et al. The use of aerobic exercise training in improving aerobic capacity in individuals with stroke: A meta-analysis [J]. Clinical Rehabilitation, 2006, 20(2): 97 111.
- [21] MUNARI D, PEDRINOLLA A, SMANIA N, et al. High-intensity treadmill training improves gait ability, VO₂ peak and cost of walking in stroke survivors; Preliminary results of a pilot randomized controlled tri-

- al[J]. European Journal of Physical and Rehabilitation Medicine, 2018, 54(3): 408-418.
- [22] GLOBAS C, BECKER C, CERNY J, et al. Chronic stroke survivors benefit from high-intensity aerobic treadmill exercise: A randomized control trial[J]. Neurorehabilitation and Neural Repair, 2012, 26(1): 85-95.
- [23] GJELLESVIK TI, BRUROK B, HOFF J, et al. Effect of high aerobic intensity interval treadmill walking in people with chronic stroke: A pilot study with one year follow-up[J]. Topics in Stroke Rehabilitation, 2012, 19(4): 353 – 360.
- [24] CALMELS P, DEGACHE F, COURBON A, et al. The feasibility and the effects of cycloergometer interval-training on aerobic capacity and walking performance after stroke. Preliminary study [J]. Annals of Physical and Rehabilitation Medicine, 2011, 54(1): 3-15.
- [25] BOYD JC, SIMPSON CA, JUNG ME, et al. Reducing the intensity and volume of interval training diminishes cardiovascular adaptation but not mitochondrial biogenesis in overweight/obese men [J]. PLOS ONE, 2013, 8(7): e68091.
- [26] SCRIBBANS TD, EDGETT BA, VOROBEJ K, et al. Fibre-specific responses to endurance and low volume high intensity interval training; Striking similarities in acute and chronic adaptation [J]. PLOS ONE, 2014, 9(6); e98119.
- [27] HOLLERAN CL, RODRIGUEZ KS, ECHAUZ A, et al. Potential contributions of training intensity on locomotor performance in individuals with chronic stroke[J]. Journal of Neurologic Physical Therapy, 2015, 39(2): 95-102.
- [28] ASKIM T, DAHL AE, AAMOT IL, et al. High-intensity aerobic interval training for patients 3 9 months after stroke; A feasibility study [J]. Physiotherapy Research International, 2014, 19(3): 129 139.
- [29] OUTERMANS JC, VAN PEPPEN RP, WITTINK H, et al. Effects of a high-intensity task-oriented training on gait performance early after stroke: A pilot study [J]. Clinical Rehabilitation, 2010, 24 (11): 979 – 987.