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In recent years, the rapid pace of  urba-
nization has resulted in a range of  ecological 
and environmental challenges, including the 
degradation of  urban ecosystems, significant 
environmental deterioration, shortage of  soil and 
water resources, and traffic congestion. These 
issues have profoundly impacted the sustainable 
development of  urban economies and societies 
in China. Land use changes can comprehensively 
illustrate the environmental changes induced 
by human activities[1]. In this research domain, 
scholars both domestically and internationally 
have conducted studies and analyses to varying 
extents across different spatial scales[2], employing 
diverse research methods[3]. Nevertheless, there 
is a paucity of  research concerning the changes 
in land use landscape patterns across various 
small urban lands in China. In this study, ArcGIS 
10.7, Fragstats 4.2, and PLUS model software 
were employed to analyze land use data from the 
study area spanning the years 1992 to 2022, to 
identify the change trends of  land use landscape 
patterns over the past 30 years. Furthermore, the 
study examined the primary factors influencing 
the changes in each type of  landscape, thereby 
providing support for the subsequent utilization 
and conservation of  land resources within the 
study area.

1    Overview of the study area
Jingzhou City is situated in the south-

central region of  Hubei Province. It exhibits a 
maximum horizontal extent of  274.8 km from 
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east to west and a maximum vertical extent of  
130.2 km from north to south, demonstrating a 
zonal distribution along the Yangtze River. The 
Yangtze River traverses the city from west to 
east, with a total length of  483 km. The terrain 
of  the city is characterized by a gradual elevation 
from the east to the west, transitioning from low 
hills to downlands and plains.

The study focused on two primary urban 
areas within Jingzhou City, Hubei Province: 
Jingzhou District and Shashi District. Jingzhou 
District is situated at the western extremity 
of  Jingzhou City, within the central region of  
the Jianghan Plain. Jingzhou is recognized as 
one of  the first 24 historical and cultural cities 
designated in China. It encompasses the core 
area of  the Jingzhou Large Site Protection Zone
in Southern China, which includes the Chuji South
City, as well as the well-preserved Jingzhou 
Ancient City Wall. Jingzhou District encom-
passes a total area of  104,580 hm2, which cons-
titutes 7.4% of  the overall area of  Jingzhou 
City. As of  the conclusion of  2022, the resident 
population of  Jingzhou District was recorded 
at 579,200 individuals. Shashi District, another 
central district within Jingzhou City, is situated 
in the eastern region of  the city, along the 
northern bank of  the Jingjiang section of  the 
Yangtze River. This district covers an area of  
52,275.38 hm2, representing approximately 3.7% 
of  the total area of  Jingzhou City. As of  the 
end of  2022, the resident population of  Shashi 
District was recorded at 681,100 individuals. 

Both Shashi and Jingzhou districts are situated 
within the same subtropical humid monsoon 
climate zone, characterized by four distinct 
seasons, ample heat, and significant rainfall. The 
annual precipitation in Shashi District typically 
ranges from 958 to 1,325 mm, whereas Jingzhou 
District experiences annual rainfall between 1,100 
and 1,300 mm. Furthermore, the average annual 
temperature in both districts is approximately 
16°C. The geographical location of  the study 
area is illustrated in Fig.1.

2    Data and methods 
2.1  Data sources

The study primarily utilized land use data 
captured in the years 1992, 2002, 2012, and 2022, 
all at a resolution of  30 m. The land use types 
were categorized into six distinct classifications: 
cultivated land, forest land, grassland, water 
bodies, construction land, and unused land, in 
accordance with the objectives of  the study. The 
results of  this classification are presented in Fig.2. 
Data pertaining to population, gross domestic 
product (GDP), and other relevant metrics were 
sourced from various online platforms, including 
the Geospatial Data Cloud, the Resource and 
Environmental Science Data Centre, and the 
National Earth System Science Data Centre.
2.2  Study methods

The research examined the changes in 
landscape patterns over the past 30 years within 
the study area by analyzing the land use transfer 
matrix and landscape pattern index from 1992 
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to 2022. The land use transfer matrix serves 
as a tool to characterize the transitions among 
various land use types, thereby illustrating both 
the magnitude and direction of  these transitions 
over a specified study period[4]. The analysis of  
landscape index within the field of  landscape 
ecology serves to characterize the composition, 
shape, spatial configuration, and spatial patterns 
of  landscape units[5]. This study analyzed the 
characteristics of  landscape pattern changes from 
1992 to 2022, taking into account various factors, 
including patch characteristics. Seven types of  
landscape indices were selected for this analysis: 
percentage of  landscape (PLAND), patch 
density (PD), splitting index (SPLIT), inters-
persion and juxtaposition index (IJI), lands-cape 
shape index (LSI), patch aggregation index (AI), 
and patch cohesion index (COHESION)[6]. The 
calculations were performed using Fragstats 4.2 
software. Additionally, 14 influencing factors 
were identified using the PLUS model to 
examine the primary determinants of  landscape 
pattern changes.

3    Results and analysis
3.1  Analysis of land use change

By analyzing and sorting the land use data 
across four distinct periods, Fig.2 and Table 
1 were generated. Fig.2 illustrates the transfer 
of  land use types within the study area over 
different time intervals, which were delineated 
into three periods, each spanning 10 years. By
compiling and examining the transfer area excee-
ding 100 hm2, as presented in Table 1, the 
predominant trends in land type transfer across 
various locations was inferred. The alterations 
in unused land and grassland were negligible 
and therefore not significant enough to warrant 
consideration.

Between 1992 and 2002, a total of 2,348.01 hm²
of  cultivated land was converted to construction 
land, 118.62 hm² to forest land, and 5,263.29 hm²
to water bodies. Additionally, 1,151.82 hm² of  
water bodies was converted back to cultivated 
land, 190.35 hm² to construction land, while 
344.79 hm² of  forest land was converted to culti-
vated land. The area of  sporadic conversions 
between various land types was minimal, measuring
less than 100 hm2. Overall, the predominant trend
involved the conversion of  cultivated land into 
water bodies, construction land, and forest land. 
This was followed by the conversion of  water 
bodies into construction land and cultivated 
land, as well as the conversion of  forest land into 
cultivated land.

From 2002 to 2012, a total of  2,372.76 hm2

of  cultivated land was converted to construction 
land, 467.1 hm2 to forest land, and 904.05 hm2

to water bodies. In contrast, the area of  
construction land converted back to cultivated 
land was negligible, while the area of  forest land 
converted to cultivated land amounted to 94.68 hm2.
In the context of  water bodies, an area of  
5,301.45 hm2 was converted to cultivated land,
while 382.59 hm2 were transformed into cons-
truction land. When compared to the preceding 
decade, there was a greater conversion of  culti-

vated land to other land types. Additionally, 
between 2002 and 2012, a significant amount of  
water bodies was converted into cultivated land.

The trend observed from 2012 to 2022 
closely resembled the combined trends of  the 
periods from 1992 to 2002 and from 2002 
to 2012. This trend was characterized by the 
conversion of  cultivated land into construction 
land, forest land, and water bodies. Additionally, 
there were notable transitions from water bodies 
to cultivated land and construction land, as well 
as from forest land to cultivated land and from 
construction land to water bodies. A total of  
4,439.07 hm² of  cultivated land was converted to 
construction land, 594.27 hm2 to forest land, and 
1,047.96 hm2 to water bodies. Conversely, water 
bodies were converted to cultivated land in an 
area of  3,123.36 hm2, and to construction land 
in an area of  329.04 hm2. Additionally, forest 
land was converted to cultivated land in an area
of  250.56 hm2, and construction land was con-
verted to water bodies in an area of  107.37 hm2.

The analysis presented above indicated 
that the predominant spatial change patterns of  
land use types within the study area included the 
conversion of  cultivated land to construction 
land, forest land, and water bodies, the transfer
of  water bodies to cultivated land and cons-
truction land, alongside a minor exchange 
between forest land and cultivated land. The 
most significant increase in land use change was 
characterized by the transition of  cultivated land 
and water bodies to construction land, whereas 
the alterations involving grassland and unused 
land were relatively insignificant. In conjunction 
with the data presented in Table 1, it can be 
inferred that throughout the study period, the 
area designated for construction within the study 
region showed a consistent annual increase. 
Conversely, the trends associated with cultivated 
land, water bodies, and forest land were more 
complex. The final results indicated an increase 
in forest land area, while both cultivated land 

Journal of Landscape Research

59

N

Jingzhou City

Slope

0      2.5   5.0              10.0 m

High: 58.030 4
Low: 0

Fig.1   Study area

Table 1   Transfer matrix of land use types in the study area from 1992 to 2022                                                                                         hm2

Time interval Cultivated land Construction land Forest land Water bodies
1992-2002 Cultivated land 127,669.68   2,348.01 118.62   5,263.29

Construction land            2.61   5,265.09     0.00        47.16
Forest land        344.79          5.31 370.80          8.10
Water bodies     1,151.82      190.35     9.00 15,493.05

2002-2012 Cultivated land 125,416.17   2,372.76 467.10      904.05
Construction land            6.57   7,777.89     0.00        25.83
Forest land          94.68          2.70 394.56          6.48
Water bodies     5,301.45     382.59     0.90  15,122.97

2012-2022 Cultivated land 124,737.57   4,439.07 594.27    1,047.96
Construction land            5.49 10,423.17     0.00      107.37
Forest land        250.56          1.62 610.11          0.27
Water bodies     3,123.36      329.04     0.18 12,606.12
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and water bodies experienced a decline. This 
phenomenon is closely linked to the processes 
of  development and construction, as well as the 
impacts of  human activities in Jingzhou District 
and Shashi District over the past 30 years.
3.2 Analysis of changes in landscape 
patterns

The landscape pattern indices for grassland 
and unused land were not analyzed, as these 
areas were relatively small and can not be 
accurately calculated using Fragstats 4.2.

The analysis of  PLAND, which denotes the 
proportion of  various land types relative to the 
total area, reveals that the highest PLAND values 
are associated with the predominant landscapes 
within the study area. The data presented in 
Table 2 indicated that, despite a 4.6% decrease 
in the PLAND values of  cultivated land from 
1992 to 2022, these values consistently remained 
significantly higher than those of  other landscape 
types throughout the 30 years. Cultivated land 
had consistently been the predominant landscape 

in the region, affirming that the landscape 
characteristics of  the study area were influenced 
by cultivated land. The second most prevalent 
landscape type, on average, was water bodies, 
which constituted between 8.69% and 13.14% 
of  the total landscape area across the entire 
region. The trend in the PLAND values from 
1992 to 2012 exhibited an inverse trend with 
that of  cultivated land, which initially increased 
before subsequently declined. However, both 
landscape types demonstrated a consistent 
decrease in PLAND values in 2022. Overall, 
both types experienced a reduction in PLAND 
values over the past 30 years. The other two land 
types, namely construction land and forest land, 
generally exhibited an upward trend; however, 
the increase in construction land was significantly 
more pronounced than that of  forest land. 
Specifically, the PLAND value for construction 
land ultimately rose by 6.25%. The results of  
the analyses indicated that construction land 
experienced the most significant changes over 

the past 30 years. This finding suggests that 
cultivated land has predominantly characterized 
the landscape pattern of  the study area during 
the past 30 years, while the alterations in 
construction land have played a central role in 
the overall transformation of  the landscape 
pattern within the study area.

From the perspective of  PD, as illustrated 
in Table 2, the PD values over the past 30 years 
can be ranked from highest to lowest as follows: 
construction land, water bodies, cultivated 
land, and forest land. Notably, the PD value for 
construction land exhibited a consistent increase, 
rising from 2.41 in 1992 to 2.86 in 2022. The PD 
value of  water areas experienced a significant 
increase from 1.82 in 1992 to 2.77 in 2002, 
followed by a gradual decline over subsequent 
years, ultimately reaching a value of  1.88, which 
is comparable to the level recorded in 1992. In 
contrast, the PD value of  forest land initially 
decreased from 0.67 in 1992 to 0.42 in 2002, 
subsequently stabilizing around an average value 
of  0.40, indicating minimal overall change in 
this type. The trend observed in cultivated land 
exhibited a more complex pattern, characterized 
by an initial increase, followed by a decrease, and 
then a resurgence, culminating in an increase of  
0.24 by 2022. In conjunction with the SPLIT
data, the mean values of  SPLIT over the past 
30 years, in descending order, was as follows: 
forest land, construction land, water bodies, 
and cultivated land. Notably, the SPLIT of  
forest landscape patches was the highest 
among the four landscape types, despite forest 
land comprising the smallest proportion of  
PLAND and PD. Conversely, cultivated land 
had the largest PLAND, but exhibited the least 
SPLIT among the four landscape types. Over 
the 30 years, the SPLIT of  cultivated land 
exhibited a partial increase, but this growth 
was not statistically significant. In contrast, 
the PLAND and PD of  construction land 
experienced an increase, accompanied by a 
significant and continuous reduction in SPLIT. 
This trend suggested a gradual expansion of  
construction land, characterized by a tendency 
towards aggregation. Furthermore, the SPLIT 
associated with water bodies and forest land did 
not demonstrate a consistent pattern of  increase 
or decrease. Instead, these landscapes exhibited 
two distinct trends: one that initially increased 
and subsequently decreased, and another that 
first decreased and then increased. These 
observations indicate that the dynamics of  
landscape SPLIT in the study area have become 
increasingly complex over the past 30 years. 

The data analyzed in conjunction with 
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Fig.2   Land use status in the study area from 1992 to 2022
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AI and COHESION revealed the extent of  
aggregation and disaggregation within the 
landscape. The mean values of  landscape AI in 
the study area, ranked from highest to lowest, 
were as follows: cultivated land, water bodies, 
construction land, and forest land. The AI 
values for cultivated land across all four periods 
exceeded 95, signifying a very high level of  
landscape spatial connectivity. Similarly, the AI 
values for water bodies consistently surpassed 88, 
indicating a strong landscape spatial connectivity 
as well. The mean AI value of  forest land just 
reached 69.66, suggesting a more dispersed 
spatial distribution of  forest land. Furthermore, 
both the AI and COHESION values for forest 
land and construction land exhibited an upward 
trend from 1992 to 2022. This trend indicated 
an increase in the spatial connectivity between 
forest land and construction land, as well as 
an improvement in the degree of  aggregation. 
The AI values associated with water bodies 
exhibited a trend characterized by an initial 
decrease followed by an increase. Additionally, 
the landscape aggregation of  water bodies 
demonstrated an upward trend based on the 
results. In contrast, the AI and COHESION 
values for cultivated land displayed minimal 
fluctuation and indicated a decreasing trend, 
while the landscape aggregation of  cultivated 
land experienced a slight decline according to the 
findings.

The alterations in IJI over the past 30 years

indicated significant changes in landscape hetero-
geneity across four distinct landscape types. 
Notably, a significant reduction in cultivated 
land was observed between 1992 and 2002, 
while the other three types remained relatively 
stable, maintaining an IJI value around 53%. 
The final analysis indicated an overall reduction 
of  2.32%, with the IJI value for cultivated land 
being markedly higher than that of  the other 
three types. The data trends for construction 
land exhibited an initial increase followed by 
a subsequent decrease, culminating in a final 
reduction of  3.33%. In contrast, the data for 
water bodies demonstrated a decrease followed 
by an increase, resulting in a final increase of  
7.15%. Similarly, the changes in forest land 
mirrored the trend observed in construction 
land, characterized by an increase followed 
by a decrease. However, the fluctuations in 
forest land were more pronounced, leading to 
a final decrease of  12.64%. Overall, cultivated 
land patches exhibited the highest degree of  
landscape heterogeneity, followed by forest land, 
water bodies, and construction land.

LSI serves as an indicator of  both the irre-
gularity and complexity of  patch shape charac-
teristics. As indicated in Table 2, the complexity 
of  patch shapes associated with construction 
land exhibited a gradual increase, rising from 
an initial value of  53.12 to 68.50. Furthermore, 
based on the mean value, the current complexity 
of  patch shapes in construction land was found 

to be the highest among the four landscape types 
analyzed. The trends and magnitudes of  change 
in the three remaining types of  landscapes 
exhibited variability. Specifically, the trend for 
water bodies initially increased and subsequently 
decreased, while forest land experienced a 
decrease followed by an increase. Cultivated land 
demonstrated a pattern of  first increasing, then 
decreasing, and finally increasing again. In terms 
of  the magnitude of  change, the order was as 
follows: water bodies exhibited the greatest 
change, followed by cultivated land, and finally 
forest land. In conclusion, the complexity of  
patch shapes among the four types of  lands-
cape patches was ranked in descending order 
as follows: construction land, water bodies, 
cultivated land, and forest land.
3.3  Analysis of influencing factors 

The factors influencing changes in lands-
cape patterns primarily encompass both natural 
and socio-economic elements. The natural 
factors include, but are not limited to, climate, 
hydrology, geology, geomorphology, atmospheric 
conditions, and vegetation, and other environ-
mental components[7]. Socio-economic factors 
encompass a range of  elements, including the
level of  urbanization, land use policies, population
change, economic growth, technological advance-
ments, and political and economic policies[8]. 
In this study, the change in area of  each land 
type from 1992 to 2022 was designated as the 
dependent variable. The LEAS model, which is 
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part of  the PLUS model, was employed to assess 
the contribution of  14 influencing factors to the 
changes observed in each land type. A higher 
contribution value indicates a greater impact on 
the expansion of  land use[9-11]. The 14 influencing 
factors selected for this analysis included: GDP, 
population, DEM, slope, air temperature, 
precipitation, soil type, and distances to primary 
roads, secondary roads, tertiary roads, railways, 
highways, government, and water systems. The 
grassland and unused land were not addressed 
at this time, as their size was insufficient for 
meaningful data analysis.

As illustrated in Fig.3, the primary factors 
influencing changes in construction land 
included distances to secondary roads, primary 
roads, and highways. The analysis of  the study 
area over a specified time interval revealed 
that the expansion of  construction land was 
significant and concentrated in areas located near 
secondary and primary roads. Furthermore, an 
examination of  the ratios of  these influencing 
factors indicated that social and economic 
factors were the predominant determinants of  
changes in construction land. The primary factor 
influencing cultivated land was the distance to 
secondary roads and highways, followed by 
DEM and precipitation. The findings indicated 

that the distance to secondary roads within 
the study area significantly influenced the 
extent of  cultivated land that was converted to 
construction land. Specifically, areas of  cultivated
land that were located closer to secondary roads
exhibited a greater degree of  conversion into 
construction land. Furthermore, an analysis
of  the influencing factors revealed that socio-
economic factors were the primary determinants
of  changes in cultivated land. The primary 
factors influencing forest land were precipi-
tation and DEM. In the study area, regions 
characterized by higher annual average preci-
pitation exhibited a significant increase in 
forest land area. As illustrated in Fig.3, the most 
substantial changes were observed in the forest 
regions of  Balingshan Township and Chuandian 
Township, where natural factors constituted a 
predominant portion of  the influencing factors, 
accounting for 69%. The primary factors 
influencing water bodies included distances to 
water systems, primary and secondary roads, and 
DEM. In the study area, which encompasses 
parts of  Long Lake and the Yangtze River Basin, 
there has been an increase in the area of  water 
bodies. Conversely, the water bodies located near 
the urban area of  Jingzhou City have experienced 
a significant reduction in size. This observation 

Analysis of Changes in Land Use Landscape Patterns and Their Driving Forces in Jingzhou City Over the Past 30 Years

62

indicates that as the distance from water systems 
decreases, the area of  water bodies tends to 
increase. In contrast, areas closer to primary and 
secondary roads are associated with a decrease 
in the size of  water bodies. Furthermore, the 
ratio of  natural factors to human factors in their 
impacts on water bodies is approximately one to 
one.

4    Conclusions 
This study focuses on the primary urban 

areas of  Jingzhou City, specifically Jingzhou 
District and Shashi District. An analysis of  
remote sensing images from 1992 to 2022 was 
conducted utilizing GIS, Fragstats, and PLUS 
software. The objective was to derive insights 
regarding land use and landscape patterns within 
the study area. The following conclusions were 
drawn from the analysis. 

(1) Between 1992 and 2022, the predo-
minant land use type in the study area was 
cultivated land, succeeded by water bodies, 
construction land, and forest land. Notably, both 
construction land and forest land experienced 
an increase in area. However, only construction 
land exhibited a consistent upward trend, while 
both water bodies and cultivated land showed a 
reduction in area. The primary transformation 
processes observed in the study area included 
the conversion of  cultivated land to construction 
land, water bodies, and grassland, as well as the 
transition of  water bodies to cultivated land and 
construction land.

(2) The analysis of  landscape pattern indi-
ces in the study area revealed that cultivated land 
had been the predominant landscape from 1992 
to 2022. During this period, the expansion of  
construction land had increasingly contributed 
to the fragmentation of  other landscape types 
within the study area. Consequently, the shapes 
of  landscape patches became more complex, 
while the heterogeneity of  other landscape types, 
with the exception of  water bodies, had gradually 
diminished. Overall, the findings indicate a trend 
of  fragmentation in the landscape of  the study 
area.

(3) The analysis of  driving forces showed 
that the primary influencing factor on the con-
version of  construction land and cultivated 
land was the distance to secondary roads. Pre-
dominantly, socio-economic factors played a 
significant role in this dynamic. The development 
of  various types of  artificially planned roads 
had resulted in a gradual transformation of  
cultivated land adjacent to secondary roads into 
construction land, leading to a consistent annual 

Table 2   Changes in landscape patterns in the study area from 1992 to 2022
Landscape index Land type 1992 2002 2012 2022
PLAND Cultivated land             85.538 9             81.602 7          82.645 0          80.938 2

Forest land               0.460 5               0.314 9            0.544 9            0.761 0
Construction land               3.357 7               4.934 2            6.656 2            9.606 3
Water bodies             10.641 4             13.148 0          10.145 6            8.694 0

PD Cultivated land               0.697 5               0.942 6            0.754 9            0.935 6
Forest land               0.674 7               0.429 6            0.391 1            0.407 5
Construction land               2.410 1               2.540 3            2.675 5            2.863 1
Water bodies               1.825 8               2.775 9            2.003 9            1.888 9

SPLIT Cultivated land               1.729 1               1.935 1            1.880 9            1.985 0
Forest land 3,874,698.523 0 4,022,595.550 0 405,571.819 9 319,705.305 8
Construction land        3,004.588 3        1,414.959 8        858.745 9        362.645 5
Water bodies           475.165 2           431.869 3        464.397 9        665.973 8

AI Cultivated land             97.679 9             96.686 4          97.189 4          96.918 8
Forest land             63.695 4             65.178 0          73.313 3          76.492 3
Construction land             78.419 7             80.954 7          82.239 8          83.519 2
Water bodies             88.640 2             86.071 0          88.749 9          90.044 7

COHESION Cultivated land             99.975 0             99.972 6          99.972 0          99.967 0
Forest land             80.832 2             83.542 7          92.437 2          92.426 5
Construction land             97.683 5             98.045 7          98.329 2          98.960 3
Water bodies             98.241 0             97.867 6          98.261 5          97.604 9

IJI Cultivated land             54.470 8             46.637 3          53.993 5          52.149 3
Forest land             33.013 7             43.509 1          31.173 4          20.369 6
Construction land             15.530 6             16.760 0          14.821 5          12.193 5
Water bodies             17.641 8             16.279 1          20.911 1          24.798 8

LSI Cultivated land             29.423 8             40.647 5          34.847 0          37.720 2
Forest land             33.311 1             26.536 9          26.831 6          27.887 9
Construction land             53.121 1             56.835 6          61.527 0          68.501 8
Water bodies             49.987 3             67.825 4          48.401 2          39.782 9 (To be continued in P68)



within the context of  study tour activities by 
designing specific case studies. The findings not 
only offer innovative insights and directions 
for the organization and design of  study tour 
activities but also contribute to the development 
of  essential competencies in students, including 
place identity, global perspective, and critical 
thinking. A regional exploration was conducted 
utilizing Dongyi Town as a case study. While this 
case is representative and typical, it is relatively 
limited in scope. Future research should consider 
expanding to additional regions and areas 
to validate and enhance the conclusions and 
findings of  this study.
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decrease in the area of  cultivated land. The 
most significant influence on forest land was 
precipitation, with human factors contributing 
approximately 30% to this impact. In contrast, 
the effects of  both human and natural factors on 
water bodies were more uniformly distributed. 
The findings indicate that all forms of  landscape 
alterations within the study area are collectively 
influenced by both human and natural factors. 
However, urban expansion and human inter-
ventions exert a more significant impact on 
the various landscape types in the region. 
Consequently, the direction and rate of  changes 
in land use landscape are still affected by a range 
of  socio-economic factors.
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