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Abstract
ferring to the hcp gene sequence of A. hydrophila. The hep gene was amplified by PCR, and performed bioinformatics analysis. [ Results] The

[ Objectives | To explore the function of hep gene in Aeromonas hydrophila. [ Methods] A pair of specific primers was designed re-

hep gene had a total length of 1 650 bp and encoded 549 amino acids. The theoretical molecular weight of the protein predicted was about
59 476.44 kDa. After predicting the N-terminal signal peptide structure of the amino acid sequence, neither obvious signal peptide cleavage
site nor signal peptide was found, and the protein had no transmembrane region. The amino acid sequence had a N-glycosylation site, 4 protein
kinase C phosphorylation sites, 7 casein kinase II phosphorylation sites, 9 N-myristoylation sites, 4 isoprene binding sites, 10 microbody C-ter-
minal target signal sites, and an ATP/GTP binding site motif A (P-ring). The amino acid sequence of hcp gene of A. hydrophila was per-
formed homology analysis with other Aeromonas strains, and it showed higher homology with A. wveronii. In the secondary structure, the a-he-
lix, B-sheet, random coil and extended strand accounted for 45.36% , 6.01 % , 37.52% and 11.11% , respectively. The tertiary structure
model consisted of 18 «-helix and 22 B-sheet. Analysis of protein-protein network interaction demonstrated that the proteins interacting with
Hep protein were AHA_3407, nrfA, nirB-1, nirB-2 and AHA_1112. [ Conclusions ]| Through the bioinformatics prediction results, the basic

information of hep gene of A. hydrophila is preliminarily understood, and the possible function of this protein is predicted, in order to provide

guidance for subsequent vaccine research.
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1 Introduction

Aeromonas hydrophila is a gram-negative brevibacterium
(G-) belonging to Aeromonas, Vibrionaceae. This bacterium, ob-
tuse at both ends and extremely monomastigote, is a common op-
portunistic pathogen without capsule or spore, and can cause in-
fection individually or simultaneously with other pathogens. A. hy-
drophila is widely found in aquatic environment and can cause out-
breaks of hemorrhagic septicemia in a wealth of freshwater fish, as
well as human food poisoning, infectious diarrhea and septicemia'"’
being an important pathogen that restricts the development of
freshwater aquaculture. Since 1989, hemorrhagic septicemia in-
duced by A. hydrophila has been violently prevalent in Jiangsu,
Hubei and other major aquaculture provinces, seriously affecting
local economy and ecology'”’. Therefore, research on the patho-
genic mechanism of A. hydrophila is of great practical significance
for preventing and controlling the occurrence and spread of infec-

tions and diseases caused by this pathogen'”'. At present, the

Received : November 12, 2023 Accepted ; February 28, 2024

Supported by Outstanding Graduate Entering Laboratory Project of College of
Fisheries, Guangdong Ocean University; National Natural Science Foundation
of China (32073015) ; Undergraduate Innovation and Entrepreneurship Train-
ing Program of Guangdong Ocean University ( CXX12023008) ; Undergraduate
Innovation Team of Guangdong Ocean University (CCTD201802).

AThese authors contributed equally to this work.

# Corresponding author. Huanying PANG, PhD., associate professor, re-

search fields; aquatic veterinary medicine.

pathogenic mechanism of A. hydrophila is mainly studied from fac-
tors such as motility’ ™', adhesion factors'®™" (8]

zymes™®? [

, toxins™™", en-

, and secretory system . However, little is shown about
the type 6 secretory system (T6SS) of A. hydrophila. Hemolysin
co-regulated protein (Hep) , the core component of T6SS that con-
stitutes its inner tube structure, forms a hexagonal ring to allow ef-
fectors to pass through, and protects effectors from being degrad-
ed"™ . Hep can form the puncture device of T6SS with VerG to in-
ject effectors into target cells”"" | and can also play a role as effec-
tor protein or molecular companion'”’ | being a key factor for the
normal function of T6SS. Chen Yun et al. '™ used Hep protein as
antigen to construct the recombinant plasmid pET-30a-Hep-sckv
containing co-regulatory single-chain antibodies ( scFv) against
Pseudomonas plecoglossicida haemolysin, which was then trans-
formed into the expression strain of Escherichia coli, offering a
simple method for rapid preparation of antibodies and providing a
reference for the development of vaccines.

In recent years, many efforts have been dedicated to hcp gene
of Bacillus and Vibrio at home and abroad, such as Acinetobacter

M Vibrio harveyi™' , and Vibrio anguillarum™

baumannii
while there have been few studies on hep gene of Aeromonas , espe-
cially A. hydrophila. Therefore, in order to explore the function of
hep gene of A. hydrophila, this paper cloned the hep gene of
A. hydrophila and conducted bioinformatics analysis of its se-
quence, laying a foundation for further research on it as a vaccine

candidate protein.
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2 Materials and methods

2.1 Materials

2.1.1 Strains. A. hydrophila 1P-2 strain was isolated and pre-
served in Guangdong Provincial Key Laboratory of Aquatic Animal
Disease Control and Healthy Culture & Key Laboratory of Control
for Diseases of Aquatic Economic Animals of Guangdong Higher
Education Institutes'"” .

2.1.2 Reagents. (i) Ex Tag DNA polymerase was derived from
Takara; (ii) bacterial genome DNA extraction kit and DNA glue
recovery kit were purchased from Tiangen Biotech Co., Lid. ;
(iii) other reagents were imported or domestic analytical pure;
(iv) PCR primer synthesis and sequencing were completed by
Sangon Biotech (Shanghai) Co. , Lid. ; (v) antibiotic ampicillin
(Amp” ) was applied at a concentration of 100 wg/mL.

2.1.3

tus (Bio-Rad) ; ultra pure water instrument ( RightLeder) ; refrig-

Instruments. Electrophoresis apparatus and PCR appara-

erated high-speed centrifuge ( Eppendorf); HVE-50 series auto-
clave (Hirayama) ; gel imaging equipment ( Priotein Simple) ; ul-
traviolet spectrophotometer (Shimadzu) ; ultra-low temperature re-
frigerator ( ThermoFisher Scientific) .

2.2 Methods

2.2.1

drophila was taken out from the ultra-low temperature refrigerator

Extraction of hep genome from A. hydrophila. A. hy-

and streaked on the LB plate. Single colonies were picked and in-
oculated onto LB medium at a ratio of 1 : 100, and oscillated in a
shaker at 28 °C, 180 r/min for over 14 h. Small amount of bacte-
rial solution was loaded into a centrifuge tube and centrifuged at
10 000 rpm/min for 2 —3 min. After the supernatant was discar-
ded, A. hydrophila was collected. According to the bacterial ge-
nome extraction kit, the total DNA of A. hydrophila was extrac-
ted, and stored at —20 °C for later use.

2.2.2 Cloning of hep gene. Based on the hep gene sequence of
A. hydrophila LP-2, a pair of primers was designed: forward
primer F1. 5’-ATGTTTTGTGTGCAATGTGAACAGA-3’; reverse
primer R1: 5’-TCAGGCCGCCAGGATCTCGGCGAGA-3’. Using
the total DNA extracted from A. hydrophila as a template, PCR
was performed in the following procedures: pre-denaturating at
95 °C for 3 min; denaturating at 95 °C for 30 sec, annealing at
63.3 °C for 30 sec, extension at 72 °C for 60 sec, 32 cycles; ex-
tension at 72 °C for 10 min. PCR products were detected by elec-
trophoresis on 1% agarose gel and purified by DNA gel cutting
kit.

2.2.3 Connection and sequencing of target fragment and vector.
The hcp and pMD 18-T vector were connected overnight at 4 °C.
The conjugated products were transferred into E. coli DHSa com-
petent cells, and incubated at 37 “C. After colony PCR detection,
the positive clones were sent for testing.

2.2.4 Web sites for bioinformatics analysis. Referring to the
methods of Pang Huanying et al. "'’ | bioinformatics websites were

utilized for analysis. (i) ExPASy Proteomics Server was employed

to predict physicochemical properties of target proteins online,
such as amino acid sequence, theoretical isoelectric point (pl),
and molecular mass; (ii) SignalP 5.0 Server was applied to pre-
dict whether the target protein contained signal peptides; (iii)
TMHMM Server 2.0 was utilized to predict whether the target pro-
tein contained transmembrane structure; (iv) SoftBerry-Psite was
applied to analyze the functional sites of protein amino acid se-
quence; (v) PSORT Prediction was employed to predict protein
subcellular localization; (vi) NCBI was a tool for sequence ho-
mology comparison and similarity analysis; (vii) DNAMAN Ver-
sion 6. 0 was applied for amino acid homology analysis; ( viii)
Clastal 2.0 and MEGA 5. 0 software were adopted to construct the
phylogenetic tree by neighbor-joining method; (ix) SMART pro-
gram was utilized to predict protein functional domain; (x) SOP-
MA software was employed to predict the secondary structure of
Hep; (xi) SWISS-MODEL was applied to predict and construct
the tertiary structure of proteins online; (xii) STRING database

was employed to search protein-protein network interaction.

3 Results and analysis

3.1 Full-length cloning of hcp gene The hcp gene was ampli-
fied by PCR. The amplification product was analyzed by agarose
gel electrophoresis, and specific bands were amplified (Fig. 1).
Sequencing of the amplification product and cloning vector
pMDI18-T showed that the hep gene contained an open reading
frame of 1 650 bp and encoded 549 amino acids.

M 1 2 3 bp
2 000 1 650
1 000
750
500

250
100

Fig.1 Cloning of hcp gene

3.2 Physicochemical properties The Hcp protein of A. hy-
drophila was analyzed by ExPASy software. The physicochemical
properties of the protein were: total number of atoms 8 380, mo-
lecular formula C, g H, 196 Negg Osg5 S5y, number of amino acids
549, theoretical molecular weight 59 476. 44 kDa, theoretical pl
5.00, fat coefficient 98.01, and total mean hydrophilicity 0. 151.
The instability coefficient was 20. 50, indicating the protein was
stable. There were 62 acid amino acid residues (Asp + Glu) and
42 basic amino acid residues (Arg + Lys) in the protein, with Met
locating at the N terminus. The estimated half-life was 30 h in
mammalian reticulocytes (in vitro) , longer than 10 h in E. coli
(in vivo) , and longer than 20 h in yeast (in vivo).

3.3 Sequence analysis The N-terminal signal peptide struc-
ture of Hep protein was predicted via SignalP 5.0 Server program,
and neither obvious signal peptide cleavage site nor signal peptide
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was found, indicating that it was not a secretory protein. Predic-
tion made by TMHMM Server 2. 0 program showed that the protein
had no transmembrane region. Prediction by SoftBerry-Psite dem-
onstrated that the amino acid sequence contained a N-glycosylation
site, 4 protein kinase C phosphorylation sites, 7 casein kinase II

1 AT TG G GCRAT CT GARCAGACAAT TCETACCCOGECAGECARCGECTEOECCTAT
1 MrcvoCcEQMM TP 2AGNGCRARY
&1 GCACAAGSTATGTGTGECARGACGECTEARACTICTGATCTGCAGSATETGCTGATCTAT
21 DOENCIEIENT A ETSDLQDVLIY

121 AT ECAGEGEC T CAR GO CT R0 TEECCGCCCEORAGCACGECATCGTOGACAGT
41 TLQGLSAWARALAAREUHEGIVDS

131 GAGATCGACGCCTTCGT GOCCARGGCCTTCTTCGCCACCCTCACCAACGTCARCTTCGAC
6l EIDAFVPEKAFFATLTUHNVNTFD

241 TCCGCCCGCATCGTGECATATGT CAACCAGGCGCTGAGCTATCGT CAGCARCT GGCTGCC

81 B ¢ vAryvyoari B ool AR

301 ARGCTGECACCGCTGGECGGTGCAGECCGACACACT GCCCGCTGOCGCCOGCTTCOGAGCCG
101 KLAPLAVQADTULPAAMAMRT EFETP

361 GETGCCGATCTECTGECCCRGCT GECCCAGGCECCECRERCCECGETCARCOGOGECRAG
121 GADLLAQLAQAPOQTA AVNRSGHK

421 ARCGRGETCRACGARGRCATCATGEGECTGOGCCTGCTCTGCCTCTACGECCTCARGEET
141 HNEVNEDIMGLRLLCLYGLIKSGEG

481 GOCECOECCTACAT GEAGCACGCCCCEETECTCEAT CRECAGEATGCCGRAGETAGCOGCC
16l AARAYMEHARVLDQQDAEVWV AR

541 GRRT TR T CECRT AT GACCTEECTOGETACGERATCOGAGCEATCTGGATCCGCTGTITIC
13l EFHRIMSWLGTDPS DLDPLTF

€0l ARGTECECCRTCEACAT TEECCTGCTCRACT ICARGAT CATGEAGRTCCTGGRTCTCGET

201 K@ 1 5L LN FKIMEMLODLSG
(138 GRAACCACOSCCT TCEECCACOCCEAGC OGO CCAGETACGOSTCACTCOGETACCGEEC
221 ETTAFGHPEPTQVRVTEVEG
721 ARGTECAT O TGET CT OO GETCRCEACATGEI GEGATCTCAAGCTCATCCTGERGCAGRCC

241 K s 6 E D M VDLKLILEGQT

741 ARGEECRCT GG RT CARGET CTACRC CCAT GEOGRGAT GUT I CEE0ECTGEICTACCCD
261 KGTGIKVYTITHGEMLTPALRAYTP

phosphorylation sites, 9 N-myristoylation sites, 4 isoprene binding
sites, 10 microbody C-terminal target signal sites, and an ATP/
GTP binding site motif A (P-ring) (Fig.2). The prediction re-
sults of protein subcellular localization by website wolfpsort sugges-
ted that most of them existed in the cytoplasm and mitochondria.

841 TICTTCARGCAGTACCCGCACCTGETGEECAGCTACGECTCOGCCTGECAGARCCAGCAG
281 FFEKQYPHLVGS YGS AWOQNOQOQ

%01 ARGGRGTTTGCCAACTTCCCGEGGCEGTGETGATGACCTCCAACTGCATCATCGRCCCG
301 KEFANFPGeAVvVHMT s ¥ R r

S5l ARCGTGEECRACTACTCGERTCGCATCTICACCCECTCCATCETCGECTEECCGEE0ETE

3z1 sver Y 1 FTRSIVGEWPGEYV

1021 RO T AR GEEEARACAT TTCT OO OO ET GAT CGCTARGECECAAGCCCTGEARGEC
341 THLEGEDFSAVIAKRAMQALTESG

1081 TTCRAGCAT T TGRECT A ACT TCATCACCAT OGECTITGOCOECARCGOCCTEATE
361 FEEVELEHRFITIGFARNALHM

1141 CAEE0 GO OGO EET ERAT CeACARAGE T CARGECCGECEARAT CAGCCACTTCTICCTG
381 QAAPAVIDEKVEAGETISHT FTFL

1201 GTOEGTGECTETGROGECEACCGT GOCGAGCECGCCTACTACACCGAGT TTGOCAASGCS
401 VEGCDGEGDRAERAY YTEV FRKA A

1261 AT OO AGEAC AR TG T TEACCCT GEET TGCGGCARASTACARGT TCAACRASCTC
421 I PQDSLLLTLGCGEKY KT FNEKL

1321 GATTTTGGCGACATCGGCGGCATTCCCOSTCTGCTGEACGTGEGTCAGT GCAACGATGCT
441 DFGDIGGI PRLLDVGQCNTDR

1381  TACTCCGCCATCCAGCTGGCGCTGGCGCTCTCCRAAGCSTTCGAGTGOGGTGTCAACGAT
481 Yysarolatatrsear e N o

1441 CTGCCOGCTGACCCTGETGCTCTCCTGGT TCGRGCAARAGGCCATCGTCATICTGCTCACT
481 LPLTLVLSWFEQEKAIVILLT

1501 CTGCTGECACTGEETCTGRAGGACATCOSTACCEECCCERCRGCTCCGECCTICCTCRCC
501 LLALGVEDIRTGPTAPATFLT

1561 CCEECCCIGCT CARGET GCTCEARGAGCRAT TTGECCTGRARGETACCACCRCOGGCCGAR
521 PALLEKVLEEQFG6LEKGTTTAETE

1621 EC0GATCTCGOCERGATCCTEE0GECCTER
541 ADLAETILARBAA A®?*

NOTE N-myristoylation site; (1520 aa, 1722 aa, 56-61 aa, 157-162 aa, 190-195 aa, 290-295 aa, 402407 aa, 532-537 aa, 535-540 aa) ; microbody C-terminal
targeting signal (82-84 aa, 100-102 aa, 116-118 aa, 168-170 aa, 341-343 aa, 353-355 aa, 396-398 aa, 418420 aa, 433435 aa, 438440 aa).

I Protein kinase C phosphorylation site;

: N-glycosylation site;

. ATP/GTP binding site motif A (P ring) ;

. Casein kinase 11 phosphorylation site; J; Isoprene binding site; * : terminator.

Fig.2 Nucleotides of icp gene and its encoded amino acid sequences

3.4 Homology and evolutionary analysis
was performed using DNAMAN software. The amino acid se-

Homology analysis

quences of hep gene from A. wveronit, A. sanarellit, A. caviae and
A. dhakensis were aligned with that from A. hydrophila. The re-
sults showed that the hep gene of A. hydrophila had high homology
with that of A. veronii, with a similarity of 99.09% (Fig.3).
The phylogenetic tree was constructed by deduced amino acid
sequences of hep gene from A. hydrophila and other Aeromonas
strains via Neighbor-joining method of MEGA 5. 0. The results
showed that A. hydrophila and A. wveronii clustered into the same
subfamily (Fig.4).
3.5 Prediction of functional domain, secondary and tertiary
structure of Hep protein  Prediction by SMART program showed
that Hep protein had a prismane functional domain (1-544 aa)

(Fig.5), with the E value of 3. 2e-162. SOPMA software was
used to predict the secondary structure of Hep protein online, and
the results showed that the secondary structure of Hep protein con-
sisted of 45.36% o-helix, 6. 1% B-sheet, 37.52% random coil
and 11.11% extended strand (Fig.6).

The amino acid sequence of Hep protein was submitted to

SWISS-MODEL program, and homologous proteins were automati-
cally searched as templates to obtain the tertiary structure model of
Hcp protein. The results showed that the protein mainly had 18
a-helix and 22 B-sheet (Fig.7).
3.6 Protein-protein network interaction of Hcp protein In
protein-protein network interaction, it can be found that the pro-
teins adjacent to this protein were AHA _3407, nrfA, nirB-1,
nirB-2, and AHA_1112 (Fig.8).



Fan LI et al. Cloning and Bioinformatics Analysis of hcp Gene in Aeromonas hydrophila 39
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NOTE  Aeromonas veronii ( WP_201995662. 1) ; A. sanarellii ( WP_
209793950.1) ; A. caviae ( WP_257713735.1) ; A. dhakensis
(WP_201988758.1).

Fig.3 Homology comparison of amino acid sequences deduced by

Consensus

hep gene
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Fig.4 Phylogenetic tree of hcp gene constructed by neighbor-join-
ing method
|
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Fig.5 Functional domain of Hcp protein
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NOTE Blue: a-helix; Green: B-sheet; Purple: random coil ; Red: ex-
tended strand.
Fig.6 Secondary structure of Hcp protein

Fig.7 Three-dimensional structure model of Hcp protein subunit of
Aeromonas hydrophila
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Fig.8 Protein-protein network interaction of Hep protein

4 Discussion and conclusions

4.1 Discussion A. hydrophila is greatly harmful to aquaculture
industry due to different levels of pathogenicity to many kinds of
aquatic economic animals, causing great economic losses. At pres-
ent, chemical drugs and antibiotics are mainly used for the preven-
tion and control of this disease, resulting in increasingly serious
problems such as drug residues and increased bacterial resist-

[19
ance

', Therefore, seeking excellent protective antigens and de-
veloping novel vaccines have gradually become a hot spot in the re-
search of aquatic diseases.

Bioinformatics analysis can accurately predict the evolutionary
relationship, physicochemical properties, secondary structure and
tertiary structure of target proteins, serving as an important tech-
nology for analyzing protein structure and function™’. Wang Nan-
nan et al. "' conducted bioinformatics analysis on 14 strains of
A. hydrophila that had completed whole genome sequencing, and
found that the recombinant Hep protein was expected to be a can-
didate vaccine target protein to prevent A. hydrophila infection.
Wei Chang et al. ' conducted coning and recombinant expression
of pathogenic bacterium Edwardsiella ictaluri hep gene, obtained
the fusion protein with high purity after purification, and formula-
ted high-titer polyclonal antibody. In this study, we cloned the hep
gene of A. hydrophila and performed bioinformatic analysis. The
sequence analysis results showed that neither obvious signal pep-
tide cleavage site nor signal peptide was found at the N terminal of
Hcp protein, indicating that Hep protein was not a secretory pro-
tein. Prediction made by TMHMM Server 2. 0 program demonstra-
ted that the protein had no transmembrane region. The amino acid
sequence had a N-glycosylation site, 4 protein kinase C phospho-
rylation sites, 7 casein kinase II phosphorylation sites, 9 N-myris-
toylation sites, 4 isoprene binding sites, 10 microbody C-terminal
target signal sites, and an ATP/GTP binding site motif A (P-ring).

Studies have proved that Hep protein plays a good role of im-

munoprotection >, We used bioinformatics analysis websites to
analyze the characteristics of Hep protein and explore the potential

of Hep protein as a candidate vaccine against A. hydrophila infec-
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tion. In the future, we will prepare recombinant Hep protein of
A. hydrophila to further study its immunogenicity.

4.2 Conclusions In this study, the hep gene was successfully
cloned from A. hydrophila and its bioinformatics analysis was per-
formed. The results showed that the hep gene had a total length of
1 650 bp and encoded 549 amino acids, with molecular formula
C, 651 Hy 106 Neog O3 Sy, theoretical molecular weight 59 476. 44
kDa, and theoretical pI 5.00. The instability coefficient was
20.50, indicating the protein was stable. Neither obvious signal
peptide cleavage site nor signal peptide was found, and the pro-
tein had no transmembrane region. It might have close genetic re-
lationship with A. veronii due to high homology. In the secondary
structure, the a-helix, B-sheet, random coil and extended strand
accounted for 45.36% , 6.01 % , 37.52% and 11. 11% , re-
spectively. The tertiary structure model consisted of 18 «-helix
and 22 B3-sheet. Through the above bioinformatics prediction re-
sults, the basic information of hep gene of A. hydrophila is pre-
liminarily understood, and the possible function of this protein is
predicted, in order to provide guidance for subsequent vaccine re-
search.
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